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The inverse water wave problem of bathymetry detection is the problem of deducing
the bottom topography of the seabed from measurements of the water wave surface. In
this paper, we present a fully nonlinear method to address this problem in the context
of the Euler equations for inviscid irrotational fluid flow with no further approximation.
Given the water wave height and its first two time derivatives, we demonstrate that
the bottom topography may be reconstructed from the numerical solution of a set
of two coupled non-local equations. Owing to the presence of growing hyperbolic
functions in these equations, their numerical solution is increasingly difficult if the
length scales involved are such that the water is sufficiently deep. This reflects the
ill-posed nature of the inverse problem. A new method for the solution of the forward
problem of determining the water wave surface at any time, given the bathymetry, is
also presented.
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1. Introduction
The problem addressed in this paper is that of recovering the shape of the solid

boundary bounding an inviscid, irrotational, incompressible fluid from measurements
of the free surface alone. This problem is an idealization of the ocean bathymetry
detection problem, which arises naturally in the study of coastal dynamics (Collins
& Kuperman 1994; Grilli 1998; Taroudakis & Makrakis 2001; Piotrowski & Dugan
2002). Further, knowledge of the ocean bathymetry is crucial for safe underwater
navigation. The current work considers fluid-mechanical principles to determine the
shape and location of the bottom surface. Other approaches to the bathymetry
detection problem exist (Collins & Kuperman 1994; Grilli 1998; Taroudakis &
Makrakis 2001; Piotrowski & Dugan 2002). Perhaps the most significant and popular
ones are based on reflection of acoustic signals from the bottom surface (Collins &
Kuperman 1994; Taroudakis & Makrakis 2001). Other methods are based on nonlinear
properties of ocean waves, such as variations in the dispersion relation of shoaling
waves (Piotrowski & Dugan 2002) and further corrections to these formulae (Grilli
1998). A recent approach that takes into account the entire flow field is due to Nicholls
& Taber (2008). Their method is based on expansions of a nonlinear operator that
accounts for the bottom surface (the Dirichlet–Neumann operator, DNO). However,
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The inverse water wave problem of bathymetry detection 563

Nicholls & Taber (2008) restrict their approach to working with standing wave profiles
on the free surface. The extension to generic waves is not obvious.

The method we propose stands apart from the methods mentioned above in that,
starting from the Euler equations for inviscid irrotational fluid flow, we make no
assumptions on the nature of the free surface (such as small-amplitude waves, standing
waves, etc.). The method allows us to accurately recover the bottom surface from only
measurements of the free-surface deviation from rest at several times. In particular,
we can recover the average depth of the bottom surface, i.e. we do not require this
as input, as is required for linear and perturbative theories (Grilli 1998; Piotrowski &
Dugan 2002) or by Nicholls & Taber (2008). Our approach is fully nonlinear and it is
not limited to one-dimensional bottom surfaces. We assume that the flow is periodic
in the horizontal directions without the presence of a vertically uniform horizontal
current. In other words, we assume the velocity potential itself is periodic. Although
the equations we derive are valid for one- and two-dimensional surface water waves,
the numerical examples presented are limited to one-dimensional surfaces, due to the
computational effort required to solve both the forward time-dependent evolution and
the inverse bathymetry detection problem for two-dimensional surfaces.

The principal question we seek to address is that of what minimal input surface
data are required to recover the bottom surface. In theory, we have that, to recover
the bottom surface, the method of reconstruction requires the surface elevation and
its first two derivatives with respect to time as functions of the horizontal variable at
one particular instant of time. In practice, it suffices to require the surface elevation at
several successive instances of time as a function of the horizontal variable: the time
derivatives may be obtained through finite differences. Although the input requirements
made in this work could be considered a challenge in and of themselves, advances
in remote sensing technology suggest these are reasonable assumptions (Piotrowski &
Dugan 2002).

The organization of this paper is as follows. The next section (§ 2) contains the
derivation of the exact nonlinear equations to be solved for the bottom surface. These
equations are a necessary condition of the full set of equations modelling water waves.
As a result, it is possible to reconstruct large-amplitude nonlinear bottom surfaces from
large-amplitude nonlinear free-surface deviations. In § 3 we present several example
calculations of bottom-surface recovery assuming that the surface elevation and its
first two derivatives with respect to time as functions of the horizontal variable
are provided. Following the examples, in § 4 we discuss in detail several numerical
issues involved in the reconstruction of the bottom surface. Bathymetry detection is a
challenging inverse problem and we delineate features of the method that exhibit the
ill-posed character of the problem. In short, many of the challenges can be explained
by the fact that the velocity field decays exponentially with depth for an inviscid,
irrotational fluid. This behaviour is manifested mathematically through the presence of
hyperbolic functions in the nonlinear equations to be solved, whose exponential growth
inhibits accurate representation in finite-precision arithmetic. Finally, in § 5, we repeat
the examples of § 3 using finite-difference approximations of the time derivatives
of the surface elevation. There we show that the bottom surface may be recovered
from measurements of the surface deviation from rest alone. The error introduced by
the finite-difference approximation is negligible and the bottom surface is recovered
accurately in certain parameter regimes, specifically in the shallow-water regime. In
this paper we recover the bottom surface from numerically generated free-surface
elevations. Bathymetry recovery from experimental data is not discussed.
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564 V. Vasan and B. Deconinck

In the appendices we present a re-derivation of the results of Ablowitz & Haut
(2008), which leads to an alternative formulation of the water-wave problem. We adapt
this formulation to solve the time-dependent evolution of water waves numerically
in order to provide the necessary input data for the bathymetry reconstruction. The
forward problem is of interest in its own right, but we do not present the full details
here. The purpose of the appendicese is simply to illustrate the connections between
the forward and inverse problems as well as to give a flavour of our method for
solving the forward problem. Details and more examples for the solution of the
forward problem will appear in a future publication.

2. The bathymetry reconstruction equation
Euler’s equations for the dynamics of an inviscid, irrotational periodic flow in a

two-dimensional (N = 1) or three-dimensional (N = 2) domain D = {(x, z) ∈ RN × R :
ζ < z< η, 0< xi < Li, i= 1, . . . ,N} are

1φ + φzz = 0, (x, z) ∈ D, (2.1)
φz −∇ζ ·∇φ = 0, z= ζ(x), (2.2)
φz −∇η ·∇φ = ηt, z= η(x, t), (2.3)

φt + 1
2(|∇φ|2+φ2

z )+ gη = 0, z= η(x, t). (2.4)

Here φ is the velocity potential, η is the surface displacement, g is the acceleration
due to gravity and Li is the period in the xi direction. We use the convention that the
Laplacian and gradient refer to those in RN , i.e. they refer to the horizontal Laplacian
and horizontal gradient.

In this section we show how one can reconstruct the bottom topography ζ from
only measurements at the surface. In particular, we state what is meant by surface
measurements. Ideally, this would entail a snapshot of η at some instant of time.
However, this is readily seen to be insufficient, since Laplace’s equation has a unique
solution for every η and ζ suitably smooth, with prescribed boundary conditions. On
the other hand, if we are given the complete solution of the free-boundary-value
problem (2.1)–(2.4), then this is (by definition) sufficient information. Our definition of
surface measurements lies in between these two extremes: we require η(x, t0), ηt(x, t0)

and ηtt(x, t0), i.e. the surface deviation from the undisturbed level and its first two
t derivatives as functions of the horizontal variable at one particular instant t = t0. The
following paragraphs indicate why this is the case. The functions η(x, t0), ηt(x, t0) and
ηtt(x, t0) can be considered the first three terms of the Taylor series of η(x, t) at some
time t = t0, and hence represent independent pieces of information. Note that (2.3)
implies that ηt(x, t0) is the normal velocity of the fluid at z= η(x, t).

If we are given the surface quantities η(x, t) and q = φ(x, η), the Hamiltonian
formulation of the water-wave problem due to Zakharov (1968) indicates that these
surface quantities fully determine the solution to the water-wave problem (2.1)–(2.4).
Instead, for now assume that at some instant of time t0 the velocity potential at the
surface q(x, t0), the shape of the surface η(x, t0) and the normal velocity ηt(x, t0) are
given. This is sufficient information to pose the following initial-value problem for the
Laplace equation with periodic boundary conditions in the horizontal directions:

1φ + φzz = 0, z< η, (2.5)
φz −∇η ·∇φ = ηt, z= η, (2.6)

φ = q, z= η. (2.7)
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The inverse water wave problem of bathymetry detection 565

The question of bottom topography reconstruction involves finding a surface ζ

such that (2.2) is satisfied by the solution of the above problem. Several issues
arise. First, we want to obtain an exact expression for the solution of (2.5)–(2.7)
in terms of known quantities so that (2.2) becomes a (nonlinear) equation for
the unknown bottom surface ζ . Indeed, solving the initial-value problem for the
Laplace equation is numerically challenging. Second, the general initial-value problem
(in z) for the Laplace equation may not have a solution far from z = η(x, t0).
The Cauchy–Kowalevski theorem (Evans 1998) only guarantees a solution in the
neighbourhood of the initial condition, i.e. near z = η(x, t0). However, the true bottom
surface ζ may be outside of this neighbourhood. Third, measurements of the velocity
potential at the surface q(x, t0) are impracticable compared to measurements of the
surface elevation itself, and it is desirable to eliminate q(x, t0) from the problem. We
proceed to address these issues below.

The expression

φ = q̂(0)
(2π)N

+ 1

(2π)N
∑
k∈Λ

eik·x cosh(|k|z)q̂(k)+ 1

(2π)N
∑
k∈Λ

eik·x sinh(|k|z)
|k| η̂t(k) (2.8)

is a formal solution of (2.5)–(2.7) when η(x, t0) ≡ 0. Here q̂(k) and η̂t(k) are the
Fourier transforms of q(x, t0) and ηt(x, t0), respectively. Thus

q̂(k)=
∫

R
e−ik·xq(x) dx, η̂t(k)=

∫
R

e−ik·xηt(x) dx, (2.9)

where

R= {x ∈ RN : 0< xi < Li, i= 1, . . . ,N} (2.10)

is the horizontal domain. The summation in (2.8) extends over all k in the lattice dual
to the physical period lattice, but disregards the zero mode. Hence

Λ=
{[

2πn1

L1
,

2πn2

L2

]T

: nj ∈ Z, n2
1 + n2

2 > 0

}
; (2.11)

see Deconinck & Oliveras (2011) for details.
To find ζ , evaluate the left-hand side of (2.2) using (2.8) for φ. This results in

the nonlinear function whose zero is the surface ζ . If the given Cauchy data (the
Dirichlet data q(x, t0) and the Neumann data ηt(x, t0)) are consistent with a well-posed
boundary-value problem for Laplace’s equation (for instance a Dirichlet condition at
z = 0 and the Neumann condition (2.3) at z = ζ ), then the solution exists outside of a
small neighbourhood of the surface z = 0. For the specific form of the solution (2.8)
to be valid at z = ζ , we require additional hypotheses. In particular, the true bottom
boundary should be analytic and thus be well approximated by bounded sets in Fourier
space.

The expression (2.8) for φ may be generalized to η(x, t0) = h0, where h0 is a
constant. In order to avoid Fourier transform methods when initial conditions are given
on surfaces, as in (2.5)–(2.7), we reduce the initial-value problem (2.5)–(2.7) to a
problem posed on z=−h0.

The reformulation of the water-wave problem due to Ablowitz, Fokas & Musslimani
(2006) introduces a global relation for the Laplace equation. The global relation
connects the boundary information on the surface η and on the bottom topography
ζ . We limit ourselves to applying the non-local relation of Ablowitz et al. (2006) on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.497


566 V. Vasan and B. Deconinck

the region −h0 < z < η(x, t0). This allows us to transfer the data on z = η(x, t0) to
equivalent data on z=−h0.

Let φ be a harmonic function in 0< xi < Li, −h0 < z< η, periodic in the horizontal
variables xi with period Li. Following Ablowitz et al. (2006),

∇ ·FH + ∂FV

∂z
= 0, (2.12)

where

FH = (−ikφz + ω∇φ)E, (2.13a)
FV = (ωφz + ik ·∇φ)E, (2.13b)

with E = exp(−ik ·x+ωz) and ω =±|k|. Integrating this divergence form and applying
Green’s theorem, we obtain the global relations∫

R
e−ik·x+|k|η [|k|(−∇φ ·∇η + φz)+ ik · (∇φ + φz∇η)]z=η dx

=
∫

R
e−ik·x−|k|h0 [|k|(−∇φ ·∇η + φz)+ ik · (∇φ + φz∇η)]z=−h0

dx (2.14)

and ∫
R

e−ik·x−|k|η [−|k|(−∇φ ·∇η + φz)+ ik · (∇φ + φz∇η)]z=η dx

=
∫

R
e−ik·x+|k|h0 [−|k|(−∇φ ·∇η + φz)+ ik · (∇φ + φz∇η)]z=−h0

dx. (2.15)

Using

[φz −∇φ ·∇η]z=η = ηt (2.16)

and

[∇φ + φz∇η]z=η =∇q, (2.17)

where ηt(x, t0) and q(x, t0) are the Neumann and Dirichlet values imposed at
z= η(x, t0), we may rewrite the global relations (2.14) and (2.15) as∫

R
e−ik·x+|k|η[|k|ηt + ik ·∇q] dx=

∫
R

e−ik·x−|k|h0[|k|ϕz + ik ·∇ϕ] dx, (2.18)∫
R

e−ik·x−|k|η[−|k|ηt + ik ·∇q] dx=
∫

R
e−ik·x+|k|h0[−|k|ϕz + ik ·∇ϕ] dx, (2.19)

where ϕ = φ(x,−h0). Multiplying (2.18) by e|k|h0 and (2.19) by e−|k|h0 , we can solve
for the terms on the right-hand side to obtain∫

R
e−ik·xϕz dx=

∫
R

e−ik·x

[
cosh(|k|(η + h0))ηt + i

sinh(|k|(η + h0))

|k| k ·∇q

]
dx, (2.20)

−
∫

R
e−ik·xϕ dx=

∫
R

e−ik·x

[
sinh(|k|(η + h0))

|k| ηt + i
cosh(|k|(η + h0))

|k|2 k ·∇q

]
dx. (2.21)

In order to obtain the above equations, we impose that φ is periodic. In other words,
we assume there is no mean current. This assumption is made throughout the present
work.
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The inverse water wave problem of bathymetry detection 567

Let us take a moment to discuss what we have accomplished. A well-posed problem
for Laplace’s equation is a boundary-value problem, not a Cauchy problem. Given
data at both z = η(x, t0) and z = −h0, we may employ the above global relations to
solve for the remaining unknown boundary conditions. Green’s integral representation
for a harmonic function in terms of its boundary data provides a solution to Laplace’s
equation. This solution depends continuously on the given boundary information; see
Evans (1998). For the problem of bathymetry reconstruction, we are given information
only on the surface z = η(x, t0), and hence we need to solve the Cauchy problem
(an initial-value problem), which is well known to be ill-posed (Guenther & Lee
1996; Evans 1998). However, with the knowledge that our input data come from a
well-posed boundary-value problem and that the domain of harmonicity extends at
least to z = −h0, the global relation allows us to transfer the given information at
z = η to that at z = −h0. Consequently, we have evaluated the harmonic function in
the interior of the domain. Since harmonic functions are analytic in the interior of
their domain of definition (and hence their Fourier transform decays exponentially as a
consequence of a Paley–Wiener-type theorem (see Paley & Wiener 1934)), the Cauchy
problem can be solved off the line z=−h0.

The discussion in the previous paragraph suggests that the definition

φ(x, z)= ϕ̂(0)
(2π)N

+ 1

(2π)N
∑
k∈Λ

eik·x cosh(|k|(z+ h0))ϕ̂

+ 1

(2π)N
∑
k∈Λ

eik·x sinh(|k|(z+ h0))

|k| ϕ̂z (2.22)

is reasonable, and further that φ is harmonic in a neighbourhood of z = −h0. In
particular, we may look for a surface ζ on which φ satisfies a homogeneous Neumann
condition using this definition. Hence we consider

F(ζ )= [φz −∇ζ ·∇φ]z=ζ(x), (2.23)

where φ is given by (2.22). We have obtained a nonlinear function of ζ whose zero
implies that the bottom boundary condition (2.2) is satisfied. If we find such a ζ , then
existence–uniqueness results for the Laplace equation, and the water-wave problem
in particular (Lannes 2005; Wu 2011), imply that we have recovered the bottom
topography. Note, however, that the numerical evaluation of the above expression for
F is a formidable task. Considerable care must be taken in evaluating the hyperbolic
functions. The exponential growth of such terms in (2.22) can cause numerical errors,
leading to errors in the overall solution.

Before proceeding, we highlight a subtlety regarding notation in (2.22). We use the
hat notation to indicate the Fourier transform. In (2.22) we take the Fourier transform
of ϕz. This will be our convention throughout. Thus ∇̂ϕ refers to the Fourier transform
of the gradient of ϕ, i.e. the hat extends over the gradient symbol.

REMARK 2.1. Under the assumption of the existence of h0 such that

min
x
η >−h0 >max

x
ζ, (2.24)

equation (2.22) is an equally effective starting point for a boundary-value problem
for Laplace’s equation. Indeed, enforcing the given boundary conditions at z = η
and z= ζ , we have two equations for the two unknowns ϕ̂z and ϕ̂. The right-hand side
of (2.22) may be interpreted as a sum of linear operators acting on ϕ̂z and ϕ̂. Solving
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568 V. Vasan and B. Deconinck

this system of equations effectively requires ‘dividing’ by the hyperbolic terms. It is
precisely this inversion that leads to the smoothness of the harmonic function in the
interior as well as the well-posedness of the boundary-value problem. See appendix B
for further details regarding boundary-value problems for Laplace’s equation and the
forward problem of the time evolution of a water wave.

The nonlinear function F defined in (2.23) depends on both the Neumann and
Dirichlet data at the surface z = η(x, t0). We may treat the Dirichlet data as an
unknown if we can supplement the equation (2.23) with another. Indeed, recall
that condition (2.2) holds for all time. Hence we consider the following system of
nonlinear equations for ζ and q:F(ζ, q)= [φz −∇ζ ·∇φ]z=ζ(x) = 0, (2.25)

d
dt

F(ζ, q)= d
dt
([φz −∇ζ ·∇φ]z=ζ(x))= 0, (2.26)

where

∇φ(x, z)= 1

(2π)N
∑
k∈Λ

ikeik·x

(
cosh(|k|(z+ h0))ϕ̂ + sinh(|k|(z+ h0))

|k| ϕ̂z

)

= 1

(2π)N
∑
k∈Λ

eik·x

(
cosh(|k|(z+ h0))∇̂ϕ + ik

|k| sinh(|k|(z+ h0))ϕ̂z

)
(2.27)

and

φz(x, z)= 1

(2π)N
∑
k∈Λ

eik·x
(|k| sinh(|k|(z+ h0))ϕ̂ + cosh(|k|(z+ h0))ϕ̂z

)
= 1

(2π)N
∑
k∈Λ

eik·x

(
− ik
|k| sinh(|k|(z+ h0))∇̂ϕ + cosh(|k|(z+ h0))ϕ̂z

)
. (2.28)

The fluid velocities at z = −h0 (the tilde variables) are given in terms of surface
measurements by

ϕ̂z =
∫

R
e−ik·x

[
cosh(|k|(η + h0))ηt + i

sinh(|k|(η + h0))

|k| k ·∇q

]
dx, (2.29)

∇̂ϕ =
∫

R
e−ik·x

[−ik
|k| sinh(|k|(η + h0))ηt + cosh(|k|(η + h0))

k

|k|2 k ·∇q

]
dx. (2.30)

Finally, we supplement these equations with the time derivative of the surface velocity
potential, namely

qt =−gη − 1
2
|∇q|2+(ηt +∇q ·∇η)2

2(1+ |∇η|2) , (2.31)

which is the equation of evolution for the surface potential obtained by Ablowitz
et al. (2006). As the velocity potential at the surface only appears through its spatial
derivatives, we solve (2.25) and (2.26) for the unknowns ζ and ∇q.

Examining (2.26), we observe that, at some instant of time, we require the
surface displacement η(x, t0), the normal velocity ηt(x, t0) and its rate of change
ηtt(x, t0) as functions of the horizontal variable x. Figure 1 provides an overview
of the algorithm to reconstruct the bottom boundary. Assume that we are given the
Dirichlet (rather, its gradient, i.e. the tangential derivative of the velocity potential)
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Use data here1

2
3

4

Solve Laplace’s equation
‘off’ this line.

Evaluate the solution along

a curve

to get data here.

FIGURE 1. Algorithm for reconstruction of the bottom surface.

and Neumann data (the normal velocity ηt(x, t0)) at the surface z = η(x, t0). We
use the Ablowitz–Fokas–Musslimani (AFM) global relation to convert these data to
corresponding data at some height z = −h0. Using the information at the horizontal
line z = −h0, we solve the initial-value problem for Laplace’s equation in the vertical
direction (along z). Finally we look for a surface z= ζ such that the normal derivative
of the potential (obtained through solving the initial-value problem) along the surface
vanishes. Thus we have evaluated the nonlinear function F in (2.25) assuming we
know q(x, t0). However, as the boundary condition (2.2) holds for all time, we impose
relation (2.26). This allows us to eliminate the Dirichlet data at z = η(x, t0). Although
the presentation above is valid for N = 1, 2, we restrict ourselves to N = 1 for the rest
of the discussion.

REMARK 2.2. As shown by Lannes (2005) and Wu (2011), the water-wave problem
(2.1)–(2.4) is well posed and has a unique solution. Since the set of nonlinear
equations (2.25) and (2.26) are necessary conditions for the full water-wave problem,
the existence of solutions to these nonlinear equations is guaranteed. We do not
investigate the uniqueness of solutions to these equations.

3. Examples
In this section we present example reconstructions carried out using the method

proposed in the previous section. In all the examples discussed below, the input data
are obtained from the non-dimensional version of (2.1)–(2.4). Assuming the scaling

φ = l
√

glφ∗, η = lη∗, z= lz∗, x= lx∗, t =
√

l

g
t∗, (3.1)

where l = L/(mπ), m is a positive integer and L is the period in the horizontal
direction, we have the following non-dimensional form of (2.1)–(2.4) for N = 1:

φxx + φzz = 0, (x, z) ∈ D, (3.2)
φz − ζxφx = 0, z= ζ(x), (3.3)
φz − ηxφx = ηt, z= η(x, t), (3.4)

φt + 1
2(φ

2
x + φ2

z )+ η = 0, z= η(x, t). (3.5)
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Here D = {(x, z) ∈ R2 : ζ < z < η, 0 < x < mπ} and we have dropped the superscript
stars. To distinguish the different regimes of the fluid flow (i.e. shallow water, large
amplitude, etc.), we define the quantities

µ= |ζ |
mπ

, ε =max
x

∣∣∣η
h

∣∣∣ , h= 1
mπ

∫ mπ

0
ζ dx. (3.6)

Thus the larger ε (the amplitude parameter) is, the more nonlinear is the fluid flow.
Values of µ near 1 indicate deep water, whereas smaller values indicate shallow water.
Note that µ is a function of the spatial variable x.

To solve (2.25) and (2.26) numerically, we approximate both unknowns ζ and qx by
their truncated Fourier series

ζ =
Kζ∑

k=−Kζ

eikxζ̂k, qx =
Kqx∑

k=−Kqx

eikxq̂x. (3.7)

Here Kζ and Kqx define the resolution of the series for the bottom surface and the
tangential velocity at the free surface η, respectively. The input data to the nonlinear
equations (2.25) and (2.26) are η, ηt and ηtt as functions of x at one particular
time t0. Typically η and ηt are obtained from a simulation of the time-dependent
evolution of water waves, with Kη the highest wavenumber resolved in the horizontal
direction. Thus the incoming data have a maximum resolution corresponding to Kη.
The generic inverse problem requires ηtt to be provided as well. In such cases, ηtt(x, t0)

is computed from ηt(x, t0) using a five-point finite-difference stencil.
The expressions in (2.27) and (2.28) involve summations over all wavenumbers.

These summations are truncated with highest mode number Kφ during the
computations. The nonlinear functions are evaluated at several points in the physical
grid and the problem is solved as a least-squares problem with the Fourier modes
of the bottom surface and tangential velocity as the parameters. We use MINPACK’s
implementation of the Levenberg–Marquardt algorithm as the least-squares solver.

3.1. Flat bottom reconstruction using travelling wave solutions
As a first example, consider the case of a travelling wave solution of Euler’s equations.
The exact nonlinear travelling wave solutions corresponding to a particular value of
the speed c are obtained from the work of Deconinck & Oliveras (2011). Given the
surface profile η, computing ηt and ηtt is straightforward once the travelling wave
assumption is made. However, in this special case we know that the tangential velocity
at the surface is related to the surface profile η through

qx = c−
√
(c2 − 2gη)(1+ η2

x), (3.8)

as described in Deconinck & Oliveras (2011). Consequently, the right-hand equation
(2.26) is not required for the bottom-surface reconstruction. This dramatically reduces
the computational effort. Furthermore, the bottom surface in the case of a travelling
wave is known to be flat (for otherwise the bottom boundary ζ must be time-
dependent) and we are in search of a single mode for the bottom surface. One
can attempt to find the zero of the norm of the nonlinear function (2.25). However we
minimize the full function evaluated at various grid points in the horizontal variable. In
fact, we do not assume the bottom surface to be flat, i.e. we assume that the bottom
surface is parametrized by several modes, as in the general case. Figure 2 depicts
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FIGURE 2. Flat bottom reconstruction using travelling wave solutions. Note the dual vertical
axes for this figure. The free surface η is shown with the solid bold line (with axis on the left).
The true bottom surface and the reconstructed surface are shown in solid and dotted lines
respectively, with the axis on the right. Here the initial guess for the least-squares solver is
shown by the dashed line above.

a 2π-periodic travelling wave solution (bold solid line) with

max |η| = 0.001. (3.9)

The true bottom boundary is given by ζ = −0.1 and the speed of the wave
c = 0.316 414 43. Thus ε = 0.01 and µ = 0.016. The initial guess for the bottom
surface is shown as a dashed line. As mentioned earlier, the bottom surface is not
assumed to be uniform. The true bottom surface is given by the thin solid line,
whereas the dots indicate the reconstructed bottom surface evaluated at select points.
Because of the difference in magnitude of the free surface and bottom topography, we
have used dual axes. The relative error in the reconstructed solution is O(10−10). Note
that all modes except the zero mode are reduced in magnitude from their initial value.
Indeed, in our method, the solution converges precisely to the bottom surface without
any a priori knowledge of the average depth.

3.2. Flat bottom reconstruction using non-stationary waves
Using non-stationary waves, both (2.25) and (2.26) must be solved simultaneously. In
this section we present the reconstruction of a flat bottom, as in the previous example.
When the surface η and normal velocity ηt are given, we are able to reconstruct
the flat bottom of ζ = −0.1. At times t = 0.5 and t = 1.0 (figure 3), the relative
error in the tangential velocity at the surface is O(10−8) and the relative error in
the reconstruction of the bottom surface is O(10−9). The shallowness parameter µ
for these cases is 0.008 and ε = 1.25 based on the initial condition for the forward
problem. Thus the input data correspond to very nonlinear flow in shallow water.
Typically, both tangential velocity and bottom surface need to be well resolved to
obtain a zero for the nonlinear functions (2.25) and (2.26) .

Figure 4 depicts the reconstruction of the same flat surface, but at a later time. As
seen in figure 4(b), the normal velocity and its time rate of change are sharply peaked.
This creates some numerical challenges when the fluid velocities at z = −h0 ((2.29)
and (2.30)) are computed using the same number of Fourier modes as are used for the
surface quantities. To allow the least-squares solver to converge, we need to smooth
the data at z =−h0 by reducing Kφ appropriately. On truncating the modes, the solver
converges to the true solution. Without truncation (Kφ = Kη), the least-squares routine
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FIGURE 3. Reconstructing the flat bottom using non-stationary flow, at (a) t = 0.5 and
(b) t = 1.0. The bold solid line shows the free surface η, the dashed line is the initial guess
and the dotted line depicts the final solution. The true solution is shown by the thin solid
line. The true bottom surface and the reconstruction are indistinguishable on the scale of the
figure.
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FIGURE 4. Reconstructing a flat bottom from non-stationary flow: (a) the same as figure 3
but at t = 2; (b) ηt (solid line) and ηtt (dashed line) versus x at t = 2. Notice the sharply
peaked spatial profiles of ηt and ηtt in panel (b), which poses difficulty in bottom-surface
reconstruction.

converges, but the nonlinear function has non-zero norm at the solution. This and other
numerical issues are discussed in detail in § 4.

3.3. Non-constant bathymetry
In this section we present the recovery of more complicated bottom surfaces. The
first example is of a surface that is approximated well by a finite number of Fourier
modes, whereas the remaining examples require a large number of modes to be well
approximated. In all cases we solve both (2.25) and (2.26) using a least-squares
routine assuming the knowledge of η(x, t0) and ηt(x, t0) (obtained from a simulation of
the time-dependent forward problem).

3.3.1. High-frequency wavy bottom
The bottom surface

ζ =−0.2− (0.01 sin 2x+ 0.025 sin x cos 2x+ 0.01 sin 12x), (3.10)
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FIGURE 5. Bottom-surface reconstruction with different resolutions: (a) Kζ = 4, Kqx = 48;
(b) Kζ = 8, Kqx = 48; (c) Kζ = 10, Kqx = 48; (d) Kζ = 12, Kqx = 48; (e) Kζ = 12, Kqx = 62;
(f ) Kζ = 12, Kqx = 62. (a–e) Reconstructed surface (dots) and the true bottom surface (thin
solid line) for different resolutions. The free surface is depicted by the solid bold line.
(f ) Computed (dots) and true (solid line) tangential velocity at the free surface.

represented by a finite number of Fourier modes, is recovered using data from a
simulation of the forward problem. The shallowness parameter varies between 0.0134
and 0.0183, whereas ε is roughly 0.3, indicating moderate-amplitude waves in shallow
water. Here we present results from one instance t0, but it should be noted that the
same surface may be recovered from data at any instance. Figure 5 presents the
bottom surface recovered for fixed Kqx and increasing Kζ . As seen from figure 5(a–d),
the bottom surface is progressively better approximated with increasing Kζ . As Kζ

is increased, the norm of the nonlinear functions in (2.25) and (2.26) decreases,
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FIGURE 6. Reconstruction for the case of a Gaussian bump on the bottom surface (3.11)
with Kζ = 8, Kqx = 24. (a) Computed solution (dots) and true bottom surface solution (thin
solid line). The bold solid line indicates the free surface η. (b) Computed solution (dots)
and true tangential velocity at the free surface (thin solid line). (c) Relative error versus Kqx
for the bottom topography ζ (dots) and for the tangential velocity at the free surface qx
(asterisks).

providing a check for convergence to the true solution. Figure 5(e,f ) shows the
bottom surface and the tangential velocity at the free surface for a suitably large
value of Kqx . The relative error in either the reconstructed ζ or qx is O(10−9). Note
that we also recover the zero mode of the bottom surface from the least-squares
computation.

3.3.2. A Gaussian bump
Our next example is the recovery of a localized feature on an otherwise flat bottom

surface. The bottom surface is given by

ζ =−0.2+ 0.025e− (x−mπ/2)2 . (3.11)

A localized feature such as a Gaussian is well represented in Fourier space by
a suitably large number of modes. Consequently, as seen in figure 6, Kζ = 8 is
sufficient to recover the bottom surface accurately. The reduced amplitude in the
surface deviation (as compared to the previous example, here ε = 0.03) implies that
large values of Kqx are not required. Figure 6(c) is a plot of the relative error in the
bottom surface ζ (dots) and the tangential velocity at the free surface qx (asterisks)
versus Kqx . We see a similar convergence to the true solution as Kqx increases. Larger
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FIGURE 7. Reconstruction of a sandbar profile. (a) Comparison of the true (thin solid line)
and computed (dots) bottom surfaces. (b) A mode-by-mode comparison of the amplitude in
Fourier space of the true (solid line) and computed solution (dots). The dashed line indicates
the relative error in the amplitude of each mode.

values of Kqx do not result in any further reduction in the relative error. Possible
reasons for this are discussed in the next section.

3.3.3. A sandbar
Consider the bottom surface given by

ζ =−0.1+ 0.015 tanh(3(x− 0.3L))+ 0.015 tanh(3(x− 0.7L)), (3.12)

which models a sandbar. Figure 7(a) presents recovery of this profile (shown with
dots) and the true bottom surface (solid line). The free surface (bold solid line) and
initial guess for the bottom surface (dashed line) are shown for reference. Alongside,
in figure 7(b), we see the mode-by-mode relative error (dashes) between the computed
bottom surface (dots) and the true bottom surface (solid line). As expected, the relative
error is largest for the modes with the smallest amplitude. The overall relative error for
the bottom surface in the ∞-norm is O(10−7) and in the 2-norm is O(10−8).

3.3.4. A multi-feature bottom surface
Our final example consists of recovering a more complex bottom surface consisting

of two distinct isolated features: a smooth step and a ripple patch. The exact surface is
given by

ζ =−0.2+ 0.02 tanh(10(x− mπ/8))− 0.02 tanh(10(x− mπ/4))
+ 0.02 cos 6x [tanh(10(x− 7mπ/8))− tanh(10(x− 3mπ/4))]. (3.13)

Figure 9 shows results for the bottom-surface recovery for increasing values of Kζ .
The step-like condition requires a large number of Fourier modes, particularly to
resolve the flat plateau between the features. Indeed, the largest error is observed along
the flat surface. Note the increased relative error in recovery of the bottom surface as
compared to the other examples. The increased error is in part due to the fact that
the bottom surface is not fully resolved in the forward simulation. The amplitudes of
the Fourier modes of the bottom surface used in the forward simulation are shown
in figure 8. Ideally, the largest mode resolved should have an amplitude of the order
of the machine precision (which is 10−15 for these calculations). As a result, the
Hamiltonian for the time-dependent evolution of the water waves has a relative error
of O(10−6) compared to the desired O(10−15) for the other simulations. In effect, this
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FIGURE 8. Amplitude of Fourier modes for the multi-feature bottom surface (3.13).

example illustrates the reconstruction of the bottom surface from data that are not
an accurate solution to the water-wave problem. Of course, there are many issues to
be separated before we can conclusively establish reconstruction from erroneous data.
Nevertheless, this example indicates some degree of reliability in bathymetry detection.

4. Discussion of numerical issues
Not unexpectedly, the majority of the numerical issues stem from the ill-posed

nature of the inverse problem, as expressed through the presence of the growing
hyperbolic functions in our formulation. In this section, we discuss various
consequences of these hyperbolic functions on the reconstruction of the bottom
surface.

4.1. Number of modes versus length scales
Owing to the exponential growth of the hyperbolic functions present in the nonlinear
equations (2.25) and (2.26), numerical overflow is observed if the wavenumbers
involved in the calculation are too large. Even when the overflow is avoided,
because of the finite precision of the floating-point representation, the accuracy
in evaluating the expressions involved in the nonlinear functions is easily lost for
larger wavenumbers. The inaccuracy in evaluating the left-hand side of the nonlinear
equations results in inaccurate reconstructions. Large wavenumbers are required to
reconstruct bottom surfaces corresponding to large-amplitude waves, as well as to
reconstruct fine detail of the bottom surface. To inhibit the size of the wavenumbers
involved, we are forced to consider water waves with small µ values. The natural and
unsurprising interpretation is that long waves enable easier reconstruction of bottom
surfaces than short waves. A useful check on the inaccuracy of the function evaluation
is to compare the relationship between the nonlinear function F and its derivative. If
the function and its derivative are correctly evaluated then

‖F(ζ +1ζ)− F(ζ )− DF(ζ )1ζ‖ = O(‖1ζ ‖2). (4.1)

Typically, with larger values for Kζ , Kqx , Kφ and Kη, this behaviour is not observed.
As a result, establishing convergence of the reconstructed bottom surface for larger
values of these wavenumbers is not possible in finite-precision arithmetic. This is true
particularly in the cases when the bottom surface requires a large number of modes to
be accurately represented and to avoid the Gibbs phenomenon.
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FIGURE 9. Reconstruction of the multi-feature bottom surface (3.13) using different
resolutions for the bottom surface: (a) Kζ = 8; (b) Kζ = 16; (c) Kζ = 26; (d) Kζ = 46. The
thin solid line indicates the true solution and the dotted line shows the computed solution. The
bold solid line is the free surface η and the dashed line is the initial guess for the least-squares
solver. (e) Relative error versus Kζ for the bottom topography ζ (dots) and for the tangential
velocity at the free surface qx (asterisks).

4.2. The problem of deep water

The equations describing water waves are such that, for large values of µ (i.e. deep
water), the gradient of the velocity potential rapidly decreases in magnitude. To see
why this may be the case, consider the following boundary-value problem:

φxx + φzz = 0, (4.2)
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FIGURE 10. Reconstructing the bottom surface in ‘deep water’. Note the dual vertical axes
for the free surface η (on the left) and the bottom surface ζ (on the right). The free surface
is shown by the solid bold line whereas the reconstructed bottom surface is shown by the
dotted line. The true bottom surface is given by the thin solid line and the initial guess for the
least-squares solver is shown by the dashed line (both with axes on the right).

for φ periodic in x with period 2π and

φ(x, 0)= f (x), φz(x,−h)= 0. (4.3)

The solution to this boundary-value problem is given by

φ(x, z)=
∞∑

n=−∞
einx cosh(n(z+ h))̂fn

cosh(nh)
. (4.4)

The z derivative vanishes at z=−h due to the boundary condition. Further,

φx(x,−h)=
∞∑

n=−∞
einx inf̂n

cosh(nh)
(4.5)

is seen to decay uniformly in x as h→∞. Thus a consequence of terms such
as cosh(kz) and sinh(kz) in (2.8) is that the solution decays exponentially in the
vertical direction. The bottom surface we seek to reconstruct is defined as the zero
of a function whose coefficients decay rapidly to zero. Hence on a finite-precision
machine, finding the zero of this function is challenging. For sufficiently large depth,
the function itself may evaluate identically to zero up to machine precision. At this
point, any function ζ(x) is a viable candidate for the bottom topography and the
least-squares routine may converge to an incorrect solution.

In the example shown in figure 10, we try to reconstruct a flat bottom from a
small-amplitude (but non-zero) travelling wave in fairly deep water. Since the wave
is a stationary solution, we may use (2.25) alone to solve for the bottom surface
as in § 3.1. The phrase ‘deep water’ does not reflect the standard use in water-wave
stability theory, as it is unrelated to the Benjamin–Feir instability. We use the word
‘deep’ rather loosely to signify a regime where the fluid velocities are of the order of
the machine precision near the bottom boundary. Hence the phrase ‘deep water’ refers
to a purely numerical effect that is not distinguished by any physical phenomenon.
On any machine with finite precision, there are values of the shallowness parameter
µ (typically much larger than 1) that imply that the water is deep in our sense of
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FIGURE 11. Reconstruction of the bottom surface in § 4.2 using a lower resolution at
z=−h0 than that of figure 10.

the term and inhibit bottom-surface reconstruction. Certainly, computing the solution
on a machine that supports arbitrary precision (or with software such as Maple or
Mathematica) overcomes this issue. This paper does not discuss arbitrary-precision
computations.

It should be remarked that the surface velocities are non-zero throughout the
horizontal interval and they are not of the order of the machine precision at the
free surface. However, the fluid velocities are of the order of the machine precision
near the bottom boundary. One possible fix to the situation described above on a
machine with finite precision is to ‘lose’ Fourier modes as we proceed deeper into
the fluid. Instead of maintaining the number of modes for the fluid velocities at
z=−h0 ((2.29) and (2.30)) equal to those used at the surface, we reduce Kφ (in effect
smooth the velocities) to a lower resolution. Figure 11 displays such a reconstruction
with a relative error for the bottom-surface reconstruction of the order of 10−11.
Thus, for deeper water (µ large), we can reconstruct only the large-scale features
of the bottom topography, effectively recovering the features corresponding to shallow
water. Of course, for sufficiently deep water, bathymetry reconstruction is practically
impossible.

The effect of deep water remains when considering non-stationary flow, as is seen
by considering the same bottom shape as given by (3.12) but at a deeper level.
Figure 12 depicts this situation for a reduced value of Kφ (about half of Kη). The
relative error in the reconstruction is O(10−2) for both the 2-norm and the ∞-norm. In
this case, the situation is further compounded by the fact that the nonlinear function is
harder to evaluate because of the loss of precision as the argument of the hyperbolic
functions increases. Indeed, the nonlinear function and its derivative do not obey
relationship (4.1) for this example.

4.3. Localized free surfaces
It is intuitively obvious that still water (no surface deviation and zero surface
velocities) can be bounded by any bottom surface. The difficulty in proving uniqueness
of solutions to the set of equations (2.25) and (2.26) is in part due to this fact.
Although the expressions are simpler when the surface deviation is zero, uniqueness
of solutions does not hold. In this section, we show this explicitly. Also we provide
examples from simulations where this behaviour can be observed.
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FIGURE 12. Reconstruction of the sandbar profile (3.12) in deep water. (a) Comparison of
the true (thin solid) and computed (dots) bottom surfaces. (b) A mode-by-mode comparison
of the amplitude in Fourier space of the true (solid line) and computed solution (dots). The
dashed line indicates the relative error in the amplitude of each mode.

Given the nature of water-wave motion, if the surface deviation is non-zero, then
the normal velocity ηt at the surface must be non-zero as well. The method of
reconstruction presented in this paper requires (η, ηt, ηtt) 6= (0, 0, 0). In the case when
(η, ηt, ηtt)= (0, 0, 0), the expressions for the nonlinear equations simplify considerably.
They become

−i
∑
kn∈Λ

eiknx sinh(knζ )q̂x − ζx

∑
kn∈Λ

eiknx cosh(knζ )q̂x = 0, (4.6)

−i
∑
kn∈Λ

eiknx sinh(knζ )q̂xqxx − ζx

∑
kn∈Λ

eiknx cosh(knζ )q̂xqxx = 0, (4.7)

where we use Λ to indicate the one-dimensional version of the dual lattice described
in § 2. The periodicity of the function q implies that these expressions can be rewritten
as

∂x

∑
kn∈Λ

ieiknx sinh(knζ )q̂= 0, (4.8)

∂x

∑
kn∈Λ

ieiknx sinh(knζ )
q̂2

x

2
= 0. (4.9)

These equations possess infinitely many non-trivial solutions, as any ζ satisfies these
equations for q constant, since∫ L

0
eiknxC dx = C

∫ L

0
eiknx dx,

= Cδkn0, (4.10)

where δkn0 is the Kronecker delta

δkn0 =
{

1, kn = 0,
0, kn 6= 0.

(4.11)
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The inverse water wave problem of bathymetry detection 581

Following Craig et al. (2005), (4.8) is a reformulation of the boundary-value problem

φxx + φzz = 0, 0< x< L, ζ < z< 0, (4.12)
φz = 0, z= 0, (4.13)

φz − ζxφx = 0, z= ζ. (4.14)

The solution of this boundary-value problem may be written as

φ =
∞∑

k=−∞
eikx cosh(kz)Φ̂k. (4.15)

The boundary condition at z = ζ may be written in the form (4.8) with Φ̂ in
the place of q̂. In other words, q is the Dirichlet value at the surface z = 0 for
the boundary-value problem associated with (4.6). Equation (4.7) corresponds to a
boundary-value problem with q2

x/2 as the Dirichlet value at the surface z = 0. Further,
non-trivial q that solve (4.6) imply non-trivial solutions for the above boundary-value
problem (4.12)–(4.14). However, since the only non-trivial solutions for φ in the above
boundary-value problem are constants, q is at most a constant in (4.6) and q2

x/2 is at
most a constant in (4.7). Hence q = C for some constant C. It should be noted that ζ
can be any continuously differentiable periodic function.

As a consequence of the arguments presented above, we do not expect the least-
squares routine to capture the true bottom surface when (η, ηt, ηtt) = (0, 0, 0). In
practice, the least-squares routine performs poorly when η is close to a constant and
(ηt, ηtt) are near machine epsilon. Consider the example depicted in figure 13, where
we attempt to reconstruct the bottom surface using a localized free surface. Figure 13
shows three different positions of the localized surface deviation. The left column
displays the free surface (bold solid line), reconstructed bottom surface (dashed line
with dots) and true bottom surface (thin solid line). The right column compares the
computed tangential velocity (dots) with the true tangential velocity (solid line). Of
course, the localized free surface implies that velocities (and consequently ηt and ηtt)
are negligible far away from the localized disturbance. Clearly, the recovery is much
better at those locations where the free-surface deviation is not negligible and poorer
further away. It should be noted that the tangential velocity at the free surface is well
resolved.

5. Examples revisited
To finish, we present results for bottom-surface recovery using the surface deviation

η (but not its t derivative) as a function of the horizontal variable x at several times.
A five-point finite-difference stencil is used to compute the time derivatives ηt and ηtt.
Figure 14 shows the bottom surface recovered for the examples of § 3.3. All errors
reported are in the L2-norm. In all cases, relation (4.1) holds for the given input data
and choice of the parameters Kη and Kφ .

As seen in figure 14, the error induced by the finite-difference approximation of
ηt and ηtt does not significantly affect the bathymetry reconstruction. The relative
error in bottom-surface reconstruction is certainly greater than that observed earlier
in § 3.3 but not by much. The absence of significant error due to the finite-
difference approximations is not unexpected. As the error induced consists of high-
frequency modes, the finite-difference approximation does not impact the bathymetry
reconstruction in the shallow-water regime. As these reconstructions are remarkably
accurate, we do not pursue more sophisticated methods to compute t derivatives.
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FIGURE 13. Recovering the bottom surface using localized surface deviations. Each row
presents a reconstruction based on a different localized surface elevation profile. The left
column shows the localized surface elevation profile (bold solid line), and the true (thin solid
line) and computed (dots) bottom surfaces. The right column depicts the true (solid line) and
computed (dots) tangential velocity at the surface.

Lastly, the finite-difference stencil uses the surface elevation η at five points in time
and thus requires minimal input data.

To conclude, we have presented a technique to reconstruct the bottom boundary
of an ideal incompressible irrotational fluid using only measurements of the free-
surface elevation at several instants of time. The method makes no assumption on the
magnitude or the form of the surface elevation. It is valid for both one- and two-
dimensional surface profiles and is, as expected, more accurate in the shallow-water
regime than in deeper water.
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FIGURE 14. Bottom-surface reconstructions using finite differences to approximate time
derivatives of the surface elevation η. We repeat the examples from § 3.3 (bottom surfaces
given by (3.10)–(3.13)) using only the surface elevation at several times as input data. A
five-point finite-difference stencil is used to approximate the time derivatives. The true (thin
solid line) and computed (dots) bottom surface cannot be distinguished on the scale of the
figure. The relative error in ζ is: (a) O(10−7); (b) O(10−7); (c) O(10−7); (d) O(10−4). The free
surface η is shown as a solid bold line and the initial condition for the least-squares solver is
given by the dashed line.
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Appendix A. Weak formulation of Laplace’s equation and the Dirichlet–
Neumann operator

Consider Laplace’s equation

φxx + φzz = 0, (A 1)

posed on the domain D = {(x, z) ∈ R2 : 0 < x < 2π,−h < z < η(x)}, where η is a
continuous periodic function with period 2π. Further assume that φ is periodic in the
horizontal variable x with period 2π, and

φz(x,−h)= 0, z=−h. (A 2)
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Let D(x) and N (x) be the Dirichlet and Neumann values of the function φ at
z = η(x). If either D(x) or N (x) is provided to us, the problem is well-posed in the
Hadamard sense for D(x) or N (x) in appropriate function spaces (Evans 1998).

Following Ablowitz & Haut (2008), consider a smooth function ψ that also satisfies
Laplace’s equation in D and the boundary condition at z=−h. Thus

ψxx + ψzz = 0 in D, (A 3)

and ψz(x,−h)= 0. Formally, ψ can be expressed as

ψ(x, z)= 1
2π

∞∑
k=−∞

eikx cosh(k(z+ h))Ψ̂k. (A 4)

Indeed, if Ψ̂k decays sufficiently fast as a function of k (at some exponential order),
then ψ is defined for z > η(x). The function Ψ̂k has a natural interpretation as the
Fourier transform of ψ(x,−h). That it decays exponentially implies that the function
ψ(x,−h) is holomorphic in a strip around the real x axis. Note that the function ψ

has a harmonic extension to z<−h through a reflection. Consequently, ψ(x,−h) is an
evaluation of the function in the interior of the domain of harmonicity. Therefore, it is
real analytic in x.

Using Green’s identity, we have

0=
∫

D
(ψ(φxx + φzz)− φ(ψxx + ψzz)) dx dz

=
∫
∂D

(
ψ
∂φ

∂n
− φ ∂ψ

∂n

)
dS

=
∫ 2π

0
ψ(x, η)[φz(x, η)− ηxφx(x, η)] dx−

∫ 2π

0
φ(x, η)[ψz(x, η)− ηxψx(x, η)] dx

=
∫ 2π

0
ψ(x, η)N (x) dx−

∫ 2π

0
D(x)[ψz(x, η)− ηxψx(x, η)] dx, (A 5)

where ∂/∂n is the normal derivative to the surface. Hence φ may be regarded as a
weak solution to Laplace’s equation. Using the representation (A 4) for ψ and noting
that

eikx[ik sinh(k(η + h))+ kηx cosh(k(η + h))] = ∂x[eikx sinh(k(η + h))], (A 6)

we obtain, after an integration by parts,

∞∑
k=−∞

Ψ̂k

(∫ 2π

0
eikx[cosh(k(η + h))N (x)− i sinh (k(η + h))D ′(x)] dx

)
= 0. (A 7)

Since this relation is valid for arbitrary Ψ̂k, we obtain the usual global relation for
Laplace’s equation derived by Ablowitz et al. (2006) (hereafter known as the AFM
global relation). In light of this derivation, we arrive at an alternative interpretation: the
global relation holds as a distribution. Indeed, expressions such as∫ 2π

0
eikx cosh(k(η + h))N (x) dx,

∫ 2π

0
eikx sinh (k(η + h))D ′(x) dx (A 8)

define a functional over a suitable space of functions, namely those that decay at least
like e−M|k|, where M =max(|η+h|), as is easily seen by applying the Cauchy–Schwarz
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inequality. As noted in Ablowitz & Haut (2008), the expressions above are themselves
linear operators that map the Dirichlet and Neumann values on the boundary to
distributions. The authors take an inverse Fourier transform of the AFM global relation
to obtain a dual formulation for the water-wave problem. The Fourier transform is
defined through duality using the inner product (A 7), as the distributions we are
considering are certainly not classical ones.

However, a more straightforward approach to the dual formulation is as follows.
Equation (A 7) is written as∫ 2π

0
N (x)

( ∞∑
k=−∞

Ψ̂keikx cosh(k(η + h))

)
dx

+ i
∫ 2π

0
D(x)∂x

( ∞∑
k=−∞

Ψ̂keikx sinh(k(η + h))

)
dx= 0. (A 9)

The above relation is an equality between two inner products. Since the Dirichlet
problem for the Laplace equation is well-posed for all suitable D(x), the above
equation implies that

∞∑
k=−∞

Ψ̂keikx cosh(k(η + h))=D(x) (A 10)

and

−i∂x

( ∞∑
k=−∞

Ψ̂keikx sinh(k(η + h))

)
=N (x). (A 11)

This is equivalent to choosing ψ = φ in (A 5). Note that the normal derivative to
(A 4) is indeed given by the expression (A 11). The above pair of equations defines
the Dirichlet–Neumann operator in terms of the parameter Ψ̂k. This same pair appears
in Ablowitz & Haut (2008) in the dual formulation of the water-wave problem. The
Fourier transform of (A 10) and (A 11) leads to

∞∑
k=−∞

Ψ̂kAkl = D̂l,

∞∑
k=−∞

Ψ̂kBkl = N̂l, (A 12)

with

Akl =
∫ 2π

0
eikx−ilx cosh(k(η + h)) dx, Bkl = l

∫ 2π

0
eikx−ilx sinh(k(η + h)) dx. (A 13)

As noted by Craig et al. (2005), the operator Akl is invertible. Equations (A 10) and
(A 11) define the Dirichlet–Neumann operator. It should be noted that this is not a
perturbative or small amplitude in η representation for the Dirichlet–Neumann operator.
Indeed, we are able to simulate large-amplitude water waves using this form of the
operator (see appendix B). However, it should be noted that we cannot simulate all
large-amplitude waves due to the presence of possible singularities in (A 4) in z> η(x)
but close to z = η(x). Note that the representation of ψ in the form given in (A 4) is
true only for some neighbourhood of z=−h even if ψ is harmonic in z< η(x). More
properly, near z= η(x), ψ should be obtained through a harmonic continuation process.
These issues and more will be discussed in a future publication devoted to the solution
of the forward problem, i.e. the time-dependent motion of a water wave.
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The associated problem with a variable topography may be addressed similarly. At
the bottom topography, we have the Neumann condition

∂φ

∂n
(x,−h− H(x))= 0, (A 14)

where H is a continuously differentiable periodic function of x with period 2π. We
start with Green’s identity as before to obtain the appropriate generalization of the
formulation in (A 10) and (A 11) to varying topography. Alternatively, we may start
with the following global relations (see Ablowitz et al. 2006):∫ 2π

0
eikx[cosh(k(η + h))N (x)− i sinh (k(η + h))D ′(x)− i sinh(kH)Φx] dx= 0, (A 15)∫ 2π

0
eikx[i sinh(k(η + h))N (x)+ cosh (k(η + h))D ′(x)− cosh(kH)Φx] dx= 0, (A 16)

where Φ(x) = φ(x,−h − H). Taking the inner product of the first equation with Ψ̂ 1
k ,

the second with Ψ̂ 2
k and adding the resulting equations, we obtain, after an integration

by parts, ∫ 2π

0

∞∑
k=−∞

eikx[Ψ̂ 1
k cosh(k(η + h))+ iΨ̂ 2

k sinh(k(η + h))]N (x) dx

+
∫ 2π

0
∂x

∞∑
k=−∞

eikx[iΨ̂ 1
k sinh(k(η + h))− Ψ̂ 2

k cosh(k(η + h))]D(x) dx

+
∫ 2π

0
∂x

∞∑
k=−∞

eikx[iΨ̂ 1
k sinh(kH)+ Ψ̂ 2

k cosh(kH)]Φ = 0. (A 17)

The above equation can be obtained from Green’s identity (A 5) with the choice

ψ =
∞∑

k=−∞
eikx[Ψ̂ 1

k cosh(k(z+ h))+ iΨ̂ 2
k sinh(k(z+ h))]. (A 18)

Imposing suitable boundary conditions, we obtain the following system of equations
for Ψ̂ 1

k and Ψ̂ 2
k :
∞∑

k=−∞
eikx[Ψ̂ 1

k cosh(k(η + h))+ iΨ̂ 2
k sinh(k(η + h))] =D(x), (A 19)

∂x

∞∑
k=−∞

eikx[iΨ̂ 1
k sinh(kH)+ Ψ̂ 2

k cosh(kH)] = 0. (A 20)

On taking the Fourier transform of these equations, we arrive at a linear system of
equations for Ψ̂ 1

k and Ψ̂ 2
k . Finally, the Neumann condition at the surface z= η is given

by

N (x)=−i∂x

∞∑
k=−∞

eikx[Ψ̂ 1
k sinh(k(η + h))+ iΨ̂ 2

k cosh(k(η + h))]. (A 21)

REMARK A.1. A similar calculation is valid for the infinite-line case.
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Appendix B. The forward problem: simulating the dynamics of the water-wave
equations in a periodic domain

Euler’s equations for one-dimensional surface water waves are given by

φxx + φzz = 0, 0< x< 2π, ζ < z< η, (B 1)
φz − ζxφx = 0, z= ζ(x), (B 2)
φz − ηxφx = ηt, z= η(x, t), (B 3)

φt + 1
2φ

2
x + 1

2φ
2
z + η = 0, z= η(x, t). (B 4)

To numerically integrate these equations in time, we rewrite them as ‘evolution
equations’ for η and q= φ(x, η, t):

ηt = G(η, ζ )q, (B 5)
qt =−gη − 1

2 [H1(η, ζ )q]2− 1
2 [H2(η, ζ )q]2+ηtH2(η, ζ )q, (B 6)

where G is the usual Dirichlet–Neumann operator for the Laplace equations.
Analogously, the operator H1 maps the Dirichlet data at the surface z = η to the
horizontal derivative φx at the surface z = η, and H2 takes the Dirichlet data to the
vertical derivative φz at the surface z = η. These operators are computed using the
following formulae:

G(η, ζ )q=−i∂x

∞∑
k=−∞

eikx[Ψ̂ 1
k sinh(k(η + h))+ iΨ̂ 2

k cosh(k(η + h))], (B 7)

H1(η, ζ )q=
∞∑

k=−∞
ikeikx[Ψ̂ 1

k cosh(k(η + h))+ iΨ̂ 2
k sinh(k(η + h))], (B 8)

H2(η, ζ )q=
∞∑

k=−∞
keikx[Ψ̂ 1

k sinh(k(η + h))+ iΨ̂ 2
k cosh(k(η + h))]. (B 9)

Here Ψ̂ 1
k and Ψ̂ 2

k satisfy (A 19) and (A 20). The evolution equations for η and q
are integrated in time using the fourth-order Runge–Kutta method with spectral
approximation of functions in the x variable. Numerical simulations are fully de-
aliased using zero padding. In practice, de-aliasing the nonlinearities assuming they are
at most cubic is sufficient.

We present two example simulations using the method described above. The
examples are similar to those of Craig & Sulem (1993). Our goal is not to present
detailed computations; rather, it is to establish that the numerical method introduced in
this section produces satisfactory results. More details and extensive examples on the
numerical solution of the Euler equations for the time-dependent motion of the surface
will be presented in a future paper. The first example is a simulation of unsteady flow.
For the second example we use an approximate Stokes wave as the initial condition.

B.1. Unsteady flow
Our first simulation is to compute the evolution of the free surface with initial
condition

η0(x)= 0.01e−4 (x−π)2 cos(4x), (B 10)

with zero initial velocity potential. The spatial period of the flow is 2π. Figure 15
shows the evolution of the surface up to t = 11.25. The simulation is stable and can be
continued longer. The computation was performed with 64 collocation points and full
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FIGURE 15. Evolution of an unsteady wave.
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10–20

10–22

0 2 4 6 8 10
t

FIGURE 16. Time series of the Hamiltonian and the momentum for an unsteady wave. The
relative error in the Hamiltonian is shown by the solid line, and the absolute error in the
momentum is shown by the dashed line.

de-aliasing was accomplished using zero padding. Figure 16 depicts the time series
for the relative error in the Hamiltonian and the absolute error in the momentum.
Evidently, these quantities are conserved well for the duration of the simulation.

B.2. An approximate Stokes wave
Our second simulation uses the following second-order approximation to a Stokes
wave as the initial condition:

η0(x)= a cos(kx)+ µ2a2 cos(2kx), (B 11)
q0(x)= ν1a cosh(k(η0 + h)) sin(kx)+ ν2a2 cosh(2k(η0 + h)) sin(2kx), (B 12)

with

µ2 = 1
2

k coth(kh)

(
1+ 3

2 sinh2(kh)

)
, (B 13)

ν1 = ω

k sinh(kh)
, ν2 = 3

8
ω

sinh4(kh)
, (B 14)

where ω2 = k tanh(kh). Figure 17 displays the evolution of a 2π-periodic wave with
k = 2, a = 0.065 and h = 1. The wave is near the linear regime and the Stokes
expansion above is seen to be a fairly accurate representation of the full wave.
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FIGURE 17. Evolution of an approximate Stokes wave.
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10–17

t

FIGURE 18. Time series of the Hamiltonian and the momentum for an approximate Stokes
wave. The relative error in the Hamiltonian is shown by the solid line, and the relative error in
the momentum is shown by the dashed line.

We show in figure 17 the wave translating over two full periods. The calculation
is carried out further in time with almost no change in the profile. Since the initial
condition is only an approximation to a Stokes wave, the peaks of the wave profile
show small oscillations as the wave translates. Again (figure 18) the Hamiltonian and
momentum are conserved.
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