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ABSTRACT ARTICLE HISTORY
We study a nonlinear stochastic fluid-structure interaction problem with 2 April 2024
amultiplicative, white-in-time noise. The problem consists of the Navier- 2 January 2025

Stokes equations describing the flow of an incompressible, viscous fluid
in a 2D cylinder interacting with an elastic lateral wall whose elasto- Fluid-structure interaction;
dyna.\mlcs is described by a membrane equation. The.ﬂow is drlvgn b.y martingale solutions;

the inlet and outlet data and by the stochastic forcing. The noise is stochastic moving boundary
applied both to the fluid equations as a volumetric body force, and to problems

the structure as an external forcing to the deformable fluid boundary.

The fluid and the structure are nonlinearly coupled via the kinematic ~ MSC:60H15,35A01

and dynamic conditions assumed at the moving interface, which is a

random variable not known a priori. The geometric nonlinearity due to

the nonlinear coupling requires the development of new techniques to

capture martingale solutions for this class of stochastic FSI problems.

Our analysis reveals a first-of-its-kind temporal regularity result for the

solutions. This is the first result in the field of SPDEs that addresses

the existence of solutions on moving domains involving incompressible

fluids, where the displacement of the boundary and the fluid domain

arerandom variables that are not known a priori and are parts of the

solution itself.

KEYWORDS

1. Introduction

This article investigates solutions of a nonlinearly coupled stochastic fluid-structure interac-
tion (FSI) problem. The focus is on a stochastically forced benchmark problem involving
a linearly elastic membrane/shell that interacts with a two dimensional flow of a viscous,
incompressible Newtonian fluid across a moving interface. This benchmark problem incor-
porates the main mathematical difficulties associated with nonlinearly coupled stochastic FSI
problems. The fluid is modeled by the 2D Navier-Stokes equations, while the membrane
is modeled by the linearly elastic membrane/shell equations. The fluid and the structure
are coupled across the moving interface via a two-way coupling that ensures continuity of
velocities and continuity of contact forces at the fluid-structure interface. The stochastic noise
is applied both to the fluid equations as a volumetric body force, and to the structure as
an external forcing to the deformable fluid boundary. The noise is multiplicative depending
on the structure displacement, structure velocity and the fluid velocity, and it is of the form
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G(u,v,n)dW, where W is a Wiener process. The main result of this article is a proof of the
existence of weak martingale solutions to this nonlinear stochastic fluid-structure interaction
problem. Namely, we prove the existence of solutions that are weak in the analytical sense and
in the probabilistic sense. In other words, we show that despite the roughness, the underlying
nonlinear deterministic fluid-structure interaction problem is robust to noise. To the best of
our knowledge, this is the first result in the field of stochastic PDEs that addresses the question
of existence of solutions on moving domains involving incompressible fluids, where the
displacement of the boundary and the motion of the fluid domain are random variables
that are not known a priori and are parts of the solution itself.

There are many applications that suggest and provide evidence to treating moving surfaces
as random boundaries in order to deal with geometric uncertainties due to insufficient data or
measurement errors, see e.g. [1] in the context of wind-engineering and [2] in the context of
blood flow. In particular, the systolic and diastolic rhythm of the heart has a strong stochastic
component, giving rise to stochasticity in FSI describing the flow of blood in coronary arteries
that sit on the surface of the heart. In fact, in [2] it was shown that the stochastic fluctuations
of the single ion channel and the sub-cellular dynamics in tissue and organ scale get reflected
in the macroscopic random cardiac events [2], which should be modeled using stochastic
partial differential equations to capture such phenomena. In general, studying stochastic FSI
is important because well-posedness of stochastic FSI models provides confidence that the
deterministic FSI models are, indeed, robust to stochastic noise that occurs naturally in real-
life problems.

Besides its applications, the problem we consider in this article is interesting from a
mathematical analysis point of view due to the challenges arising from the random nature
of the moving fluid domains. In this article, we develop techniques to deal with these
challenges in establishing the existence of martingale solutions to this class of stochastic
moving boundary problems.

In terms of stochastic PDEs describing incompressible, viscous fluids, the existence of
solutions to the stochastic Navier-Stokes equations, and their properties have been the subject
of numerous studies, see, e.g., [3-5]. However, in terms of analysis of stochastic fluid-
structure interaction involving incompressible fluids, to the best of our knowledge, there is
only one work that addresses questions of existence of solutions to such problems [6]. More
precisely, in [6] the authors prove the existence of a pathwise solution to a linearly coupled
FSI model, where the fluid and structure coupling conditions are evaluated along a fixed fluid
structure interface, with a stochastically forced membrane. The present work is a nontrivial
extension of the results from [6] to the nonlinearly coupled case, and to the case in which
a stochastic forcing is applied not only to structure equations, but also to the bulk fluid in
the form of a stochastic fluid body force. The difficulties faced in the present manuscript are
unique since in [6] the fixed geometry in the problem does not lead to the same considerations
and issues as the ones in this article that arise due to the random and time-dependent motion
of the fluid domain. Additionally, in [6], the time-dependent Stokes equations are used to
model the fluid flow whereas in the present article we consider the Navier-Stokes equations.

The proofin the present article is based on discretizing the problem in time by partitioning
the time interval (0, T) and constructing approximate solutions using an operator splitting
Lie scheme. For time-splitting methods for stochastic equations see e.g. [7], [8] and the
references therein. At each time step, our multi-physics problem is split into two subproblems:
the structure subproblem and the fluid subproblem. In the first subproblem, the structure
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displacement and the structure velocity are updated while keeping the fluid velocity the same.
In the second subproblem, keeping the structure displacement unchanged, the fluid velocity
is updated while also ensuring that the kinematic coupling condition is satisfied. Based on
this splitting scheme, uniform energy estimates in expectation are derived. To deal with the
highly nonlinear nature of the problem, we then employ tightness arguments by obtaining
estimates on fractional time derivatives of order < % of the approximate solutions.

The main new component of the present work is the treatment of the geometric
nonlinearity associated with the stochastic fluid domain motion. The main mathematical
issues are related to the following: (1) the fluid domain boundary is a random variable,
not known a priori, (2) the fluid domain can possibly degenerate in a random fashion,
e.g., the top boundary can touch the bottom of the fluid domain at a random time, and
(3) the incompressibility condition gives rise to the difficulties in establishing compactness
and in the construction of appropriate test functions on stochastic moving domains. While
similar issues arise in the deterministic case as well, their resolution in the stochastic case is
remarkably different. In particular, to deal with the stochastic motion of the fluid domain,
we map the equations defined on stochastic moving domains onto a fixed reference domain
via the Arbitrary Lagrangian-Eulerian (ALE) mappings, which are random variables defined
pathwise. The use of the ALE mappings and the analysis that follows is valid for as long as the
compliant tube walls do not touch each other, i.e., until there is a loss of strict positivity of the
Jacobian of the ALE transformation. Handling this no-contact condition in the stochastic case
requires a delicate approach, which in this manuscript is done using a cut-off function and
a stopping time argument. The cut-off function artificially maintains a minimum distance of
8 > 0 between the walls of the tube, preventing them from coming into contact while also
providing the required regularity for any realization of the structure. This step is crucial in
obtaining energy estimates as it provides a deterministic lower (and upper) bound for the
artificial structure displacement. A stopping time argument is then developed at the end to
show that this cut-off function does not “kick in” until some stopping time which is strictly
positive almost surely. Thus, we show that there exists an a.s. positive time until the original
ESI problem has a martingale solution.

Finally, as mentioned above in point (3), the incompressibility condition is a challenge
associated with the construction of test functions, which depend on the random moving
domains. This problem arises, among other places, in the application of the Skorohod
representation theorem to upgrade convergence results. are not applicable here. To overcome
this difficulty, we introduce an augmented system, whose solution is not divergence free and
is an approximation of the original divergence-free system due to an added singular term that
penalizes the transformed divergence using the parameter ¢ > 0. While this gets around the
difficulties related to working with random test functions and random phase spaces, addition
of the penalty term together with the low expected temporal regularity of the solutions
create problems in obtaining compactness (tightness) results. Hence, we apply non-standard
compactness arguments by constructing appropriate test functions that result into bounds
on fractional time derivative of the solutions that are independent of ¢ and the time-step
At. By doing so, we reveal a hidden regularity in time of the weak solutions to our FSI
problem which is the first temporal regularity result including deterministic FSI literature.
Our tightness argument also bypasses the need for estimates on higher order moments of the
solutions. This new tightness argument is one of the novelties of this manuscript. We then
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show that the solutions to this approximate system indeed converge to a desired solution of
the limiting equations as At — 0 and ¢ — 0.

We next obtain the necessary almost sure convergence results for the approximate solu-
tions/stochastic processes by using a variant of the Skorohod representation theorem given
in [9] which gives the existence and characterization of a (possibly new) probability space
and a sequence of random variables with the same laws as the original variables that converge
almost surely to a martingale solution of the original problem. Thanks to this variant, the new
probability space can be taken canonically to be the same probability space [0, 1]*> with the
Borel sigma algebra and Lebesgue measure, and where the new Brownian motions on the same
probability space are the same (i.e. parameter independent). This is crucial in the construction
of a filtration which is compatible with the process of taking the limits, where we have to
construct appropriately measurable random test processes so that the penalty term drops out.

Since the stochastic forcing appears not only in the structure equations but also in the
fluid equations themselves, we come across additional challenges, which are associated with
the construction of the appropriate “test processes” on the approximate and limiting moving
fluid domains. Namely, along with the required divergence-free property on these domains
and the kinematic coupling condition, the test functions also have to satisfy appropriate
measurability properties. We construct these approximate test functions in step 1 of the proof
of Theorem 5.5 by first constructing a Carathéodory function that gives the definition of a
test function for the limiting equations and then by “squeezing” this limiting test function in
a way that preserves its desired properties on the approximate domains (see (83) and (84)).
The approximate test functions are built so that they converge almost surely to the limiting
test functions.

Once these issues are taken care of, the final martingale solutions are obtained from our
time-marching scheme in two steps. First, we consider the limits as the time step converges
to zero to obtain solutions which satisfy an ¢ approximation of the the incompressibility
condition. Then, the penalty parameter ¢ is let go to zero to obtain the martingale solutions
to the original problem.

In Section 2, we explain the setup of the stochastic benchmark FSI problem, the noise
structure and give the definition of a martingale solution (see Definition 1). In Section
3, particularly in Subsection 3.1, we describe the splitting scheme for the penalized fluid-
structure system along with the construction of the artificial structure displacement. This is
followed by the derivation of energy estimates and the construction of approximate solutions.
In Section 4, we obtain tightness of the laws of the approximate solutions and pass N — oo
(i.e. the time step At — 0). In Section 5, we pass the penalty parameter ¢ — 0. This section
also includes the construction of the test functions. Our findings are summarized in our main
result Theorem 5.8.

2. Problem setup
2.1. The deterministic model and a weak formulation

We consider the flow of an incompressible, viscous fluid in a two-dimensional compliant
cylinder with a deformable lateral boundary whose time-dependent motion is described
by a one-dimensional membrane/shell equation capturing displacement only in the vertical
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Figure 1. A sketch of the fluid domain O;;(t) with the elastic lateral boundary I'j (t), the inlet and outlet boundaries I'j,
and [oyt, and the bottom (symmetry) boundary I'y. The lightly shaded region represents a confidence interval of where the
structure is likely to be.

direction. The left and the right boundary of the cylinder are the inlet and outlet for the time-
dependent fluid flow. We assume 2D-reflection symmetry of the data and of the flow along
the horizontal axis, which allows us to consider the flow only in the upper half of the domain,
with the bottom boundary fixed and equipped with the symmetry boundary conditions. See
Figure 1.

The time-dependent fluid domain, whose displacement is not known a priori will be
denoted by

Op(t) = {x=(zr) e R*:z€ (0,L),r € (0,R+ n(t,2)},
where the top lateral boundary is given by
I, ={(z,r) e R*:z € (0,L),r = R+ n(t2)).

The inlet, outlet, and bottom boundaries are I';;, = {0} x (0,R), oyt = {L} x (0O, R), T}, =
(0,L) x {0}, respectively.

The fluid subproblem: The fluid flow is modeled by the incompressible Navier-Stokes
equations in the 2D time-dependent domains O, (t)

du+ (u-Vyu=V. .o+ FH

Vu=0, )

where u = (u,, u,) is the fluid velocity. The Cauchy stress tensor is 0 = —pI +2vD(u) where
p is the fluid pressure, v is the kinematic viscosity coeflicient and D(u) = %(Vu + (Vu)T)
is the symmetrized gradient. Here F' represents any external forcing impacting the fluid,
which in this work will be stochastic. The fluid flow is driven by dynamic pressure data given
at the inlet and the outlet boundaries as follows:

1
p+ 5|u|2 = Pin/out(t):

)
ur=0 on I‘Iin/out-
Whereas on the bottom boundary I';, we prescribe the symmetry boundary condition:
U = o,u, =0 only. (3)

The structure subproblem: The elastodynamics problem is given by the linearly elastic Koiter
shell equations that describe the vertical or radial displacement 7:

on—3n+dn="F, in(0L), (4)

where F,, is the vertical component of the total force experienced by the structure. As we shall
see below, F,, will correspond to the difference between the fluid traction on one side and
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external random forcing on the other. The above equation is supplemented with the following
boundary conditions:

n(0) = n(L) = 3;n(0) = 9,n(L) =0. (5)

The non-linear fluid-structure coupling: The coupling between the fluid and the structure
takes place across the current location of the fluid-structure interface, which is simply the
current location of the membrane/shell, described above. We consider a two-way coupling
described by the kinematic and dynamic coupling conditions that describe continuity of
velocity and continuity of normal stress at the fluid-structure interface, respectively:

« The kinematic coupling condition is:

(0’ 3t’7(t» Z)) = u(t’ Z>R + n(ta Z)) (6)
 The dynamic coupling condition is:
Fy = —J(2)(0)|(tzn(t) - & + F7 - e, (7)

where n is the unit outward normal to the top boundary, e, is the unit vector in the

vertical/radial direction, and J (¢, z) = /1 + (8,1(%, 2))? is the Jacobian of the transforma-
tion from Eulerian to Lagrangian coordinates. As earlier, F;’“ denotes any external force
impacting the structure, which in this work will be a stochastic.

This system is supplemented with the following initial conditions:

u(t = 0) = ug, n(t = 0) = ng, In(t = 0) = vo. (8)

2.2. Weak formulation on moving domains

Before we derive the weak formulation of the deterministic system described in the previous
subsection, we define the following relevant function spaces for the fluid velocity, the struc-
ture, and the coupled FSI problem:

"/Z:(t) = {u= (uu,) € Hl(On(t)) :V.ou=0,u;, =00nT,(t),u, =00n 30, \ I, (1)}
W0, T) = L®(0, T;L2(0 () N L2(0, T; ()
#5(0,T) = W (0, T; L*(0, L)) N L (0, T; H(0, L))
V0, T) = {(wn) € Zp0,T) x #50,T) : u(t,z, R+ 1(t,2)) = dn(t, 2)e,}.
We will take test functions (q, ¥) from the following space:
2"0,T) = {(q, %) € C'([0, Tk V¢() x H2(0,L1)) : q(t,2, R+ 11(t,2)) = ¥ (£, 2)ey ).

Next, we derive a weak formulation of the problem on the moving domains. We begin by
considering the fluid Equation (1). We multiply these equations by q, integrate in time and
space and use Reynold’s transport theorem to obtain

t
(u®),q®)o,r = (u0),9q(0)o,© + /0 /o ()H(S) - 0sq(s)dxds

t t
+ / / |u(s)|2q(s) -n(s)dSds — / / (u(s) - V)u(s)q(s)dxds
0 JTy0) 0 JOy(s)

t t
- 2v/ / D(u(s)) - D(q(s))dxds + / / (on(s)) - q(s)dSds
0 JO, ) 0 JaO,(s)
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t
+ / / F&*(s)q(s)dxds.
0 JO,(5)

Let us introduce the following notation:
1
b(t,u,v,w) := —/ ((a-V)v-w—(u-V)w-v)dx
2 Jo,m

We calculate:

1 1 1
(@ Vugo, = (@ Vw0, + 5 Vg wo, - 3 / jul?q - nds
20,

1 1 1
— buug -2 / ulq - nds + - / ulg.ds — - / [ul?g.ds.
2 rn 2 1—‘in 2 Fuut

(—d,n(t), 1), we obtain

: _ 1
Since Il(t) = m
L
g nds = | @y
ry 0

Now using the divergence free property of fluid velocity u and the fact that u, = 0 on I'j/ous
we have that d,u, = —0,u; = 0 on I'j;/0,:. Hence we obtain

1 1
/ on-qdS = / +pq.dS = / (Pin — E|u|2> qzdr — / (Pout — E|u|2> qcdr,
1—‘in/aut l—‘in/out Cin Cout

whereas [ on - qdS = 0.
Next we consider the structure Equation (4). We multiply (4) by ¥ and integrate in time
and space to obtain

@ (0), ¥ (1)) = (vo, ¥(0)) +/ / dsndsy dzds — / / (02002 + 02210z )dzds

//]an erwdzds—k//Fexttﬁdzds

Thus, we have obtained the following weak formulation of the deterministic problem: for any
test function Q = (q, ) € 2"(0, T) we look for (u, ) € # (0, T), such that the following
equation is satisfied for almost every ¢ € [0, T:

/ u(t)q(t)dx+/ 8tn(t)1ﬁ(t)dz—// u - 9;,qdxds
Onay

One

+/ b(s,u,u,q)ds+2v/ / D(u) - D(q)dxds
0 0 JOu

1 [t L t L t L
——/ / (asn)zwdzds—/ / asnaswdzds—l-/ / (0,m0, ¥ + 0,,m0,, ¥ )dzds
2Jo Jo o Jo o Jo
L t 1
:/ uoq(O)dx+/ vow(o)dz—l-/ P,-n/ 9z
o 0 0 0 z=

1o

t t L
+ / / q.Ff[’“ dxds + / / lﬁFZ’“ dzds,
0 JO,0) o Jo

drds
z=1

t 1
drds — / Py / 4z
0 0 0 =

)
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where F& is the volumetric external force and F;’“ is the external force applied to the
deformable boundary.

2.3. The stochastic framework and definition of martingale solutions

We will incorporate the stochastic effects by considering F&*' and Ff]’“ to be multiplicative
stochastic forces determined by the noise coefficient G(u, v, 1) defined on a product space
made precise in Assumption 2.1 below, satisfying certain assumptions specified in (20). We
can then write the combined stochastic forcing F**' in terms of this G as follows:

F&' .= G(u, v, n)dW, (10)

where u is the fluid velocity, v is the structure velocity, 7 is the structure displacement, and W
is a Wiener process. More precisely, the stochastic noise term is

defined on a filtered probability space (2, F, (Ft)r>0,P) that satisfies the usual assump-
tions, i.e., Fo is complete and the filtration is right continuous, that is, 7; = N>¢F; for all
t > 0. We assume that W is a U-valued Wiener process with respect to the filtration (F¢)>0,
where U is a separable Hilbert space. To specify the properties of the noise coefficient G, which
will be done below in Assumption 2.1, we introduce Q to be the covariance operator of W,
which is a positive, trace class operator on U, and define Uy := Q% U).

We will use this framework to define a martingale solution to our stochastic FSI problem.
In order to do this, we first transform the problem defined on moving domains onto a fixed
reference domain using a family of Arbitrary Lagrangian-Eulerian (ALE) mappings. The
mappings are defined next.

2.3.1. ALE mappings

As mentioned in the introduction, the geometric nonlinearity arising due to the motion
of the fluid domain will be handled by the arbitrary Lagrangian-Eulerian (ALE) mappings
which are a family of diffeomorphisms, parametrized by time ¢, from the fixed domain
O = (0,L) x (0, 1) onto the moving domain O,,(t). Notice that the presence of the stochastic
forcing implies that the domains O, are themselves random. Hence, to take into account our
stochastic setting we consider for any sample @ € €2, the ALE mappings defined pathwise:

A;‘)(t) : O — O,(t, w) given by A%’(t)(z, r) = (z, (R+ n(t,z, w))r). (11)
Then, given any w € €, for as long as the Jacobian of the ALE mapping
|det VA;‘)(t)I = |R+ n(t,z, )| (12)
is bounded and bounded away from zero and continuous, the map
Fi : I(O, (1)) — L*(O) given by Fi(f)(z,1) = fI(A% (£)(z,1)] (13)
is well-defined and

IF:(Dlr20) = Cliflzzo, 1)

where the constant C > 0 depends on the lower and upper bounds of the Jacobian of the ALE
mappings. Hereon, we will suppress the notation w and the dependence of the variables on w
will be understood implicitly.
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Under the transformation given in (11), the pathwise transformed gradient and sym-
metrized gradient are given by

;1 1 1 T
Vi=|09,— 0, ——0 dD"(u) = = (V" v .
<z rR+nrR+77r> and D" (w) 2( u+ (V') u)

We use w' to denote the ALE velocity:
wn = atnrer,

and we rewrite the advection term as follows:
1
b (u,w,q) = 2 /O(R +n) ((@—w)-VHhu-q— (u—w)-V"q-u).

We are now in a position to define the notion of martingale solutions to our stochastic FSI
problem.

2.3.2. Definition of martingale solutions
We start by introducing the functional framework for the stochastic problem on the fixed
reference domain O = (0,L) x (0, 1). For this purpose, we will denote by

= (0,L) x {1}

the reference configuration of the moving domain. The following are the function spaces for
the stochastic FSI problem defined on the fixed domain O:

V={u= (upu) e H(©O):u; =00onT,u, = 00ndO \ T}, (14)
W = L*(L%°(0, T; L*(0))) N L2(L%(0, T; V), (15)
Ws = L*(92; W (0, T; L*(0, L)) N L*(0, T; H3 (0, L))), (16)

WO, T) ={(u,n) € #gp x #s:u(t,z,1) = n(t,z)e;and V' -u=0P —as). (17)
The test space is defined as follows:
7 ={(@¥) €V x H{(O,1) : q(z1) = ¥ (e} (18)
Very often we will work with the following space for the fluid and structure velocities:
U ={(u,v) € Vx L*(0,L) : u(z,1) = v(z)e,}. (19)
We further introduce the following notation:
L? := 1*(0) x L*(0,L).

Before we define a martingale solution, we specify the stochastic noise as follows.

Assumption 2.1. Let Ly(X,Y) denote the space of Hilbert-Schmidt operators from a Hilbert
space X to another Hilbert space Y. The noise coefficient G is a function G : % x L*°(0,L) —
Ly(Up; L?) such that the following Lipschitz continuity assumptions hold:

G, v, ML, ey < Inllz=o.n lallzoy + 1Vl20,z)
G(ay, vi,n) — Gz, va, M I, wpir2y = IMllzeo.ny llar — w220y + Ivi — vallr2o,n)> (20)
1G(a, v, 1) — G(w, v, 12) |, Upir2) < 1M — n2lleo.n) lallrzo)-
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As example of such a noise coeflicient G is a linearly multiplicative noise transformed onto
the fixed domain. More precisely, G can take the form

(G, v, ), (g, %)) == (R+nu,q@ + (1, ¥)) - D, (1)

where ® € Ly(Up;R) and (., ) is the inner product on L?. We remark that nonlinear noise
coeflicients are allowed in our analysis as well.
We are now in position to define solutions to the system (1)-(8) in stochastic setting.

Definition 1. (Martingale solution). Letuy € L?(O)and vy € L*(0, L) be deterministic initial
data and let g € HS (0, L) be a compatible initial structure configuration such that for some
8 > 0 the initial configuration satisfies

1
8 <R+ny(z), Vzel[0,L], and |[R+no ||H§(0,L) < 3 (22)
We say that (., u, 1, T) is a martingale solution to the system (1)-(8) under the assumptions
(20) if:

(1) & = (2 F, (F)e=0,P, W) is a stochastic basis, that is, (2, F, (Fp)r>0, P) is a filtered
probability space and W is a U-valued Wiener process;

(2) (w,n) € #(0,T);

(3) 7 isalP-as. strictly positive (F;)>0—stopping time;

(4) U = (u, 9;n) and n are (F;)>0—progressively measurable;

(5) For every (F;)s>0—adapted, essentially bounded process Q := (q, ) with C! pathsin 7
such that V7 . q = 0, the following equation holds P—a.s. for almost every ¢ € [0, 7):

L

L
/o(R + n(®)u(t)q(t)dx + / o)y (Hdz = /O(R + 10)uoq(0)dx + / voy (0)dz
0 0
t t
+ / / (R + n(s))u(s) - 9sq(s)dxds + l/ / (9sn(s)u(s) - q(s)dxds
0 Jo 2Jo Jo
t t
- / b (u(s), w"(s), q(s))ds — ZV/ / (R + n(s))D"(u(s)) - D"(q(s))dxds
0 0 Jo

t L t L
+ / / 041(5) s () deds — / / 81(5)30 (5) + 9z ($)Dea (5)dzds
0 0 0 0

t 1 1
+/ (Pin/ qz dr—Pout/ qz
0 0 z=0 0

The main result of this manuscript is the proof of the existence of martingale solutions.
The proof relies on the following operator splitting scheme.

t
z_ldr> ds+/0 (Q(5), G(U(s),n(5)) dW(s)).
(23)

3. Operator splitting scheme

In this section, we introduce a Lie operator splitting scheme that defines a sequence of
approximate solutions to (23) by semi-discretizing the problem in time. The final goal is
to show that up to a subsequence, approximate solutions converge in a certain sense to a
martingale solution of the stochastic FSI problem.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 363

3.1. Definition of the splitting scheme

We semidiscretize the problem in time and use operator splitting to divide the coupled
stochastic problem into two subproblems, a fluid and a structure subproblem. We denote the
time step by At = % and use the notation " = nAt forn =0,1,...,N.

Let (u®, n°,v%) = (o, 19, vo) be the initial data. At the i" time level, we update the vector
(w2, " 2,1 1), where i = 1,2and n = 0,1,2,..,N — 1, according to the following
scheme.

3.2. The structure subproblem

We update the structure displacement and the structure velocity while keeping the fluid veloc-
ity the same. That is, given (n”,v") € HS(O, L) x L*(0, L) we look for a pair (n”+%, v”+%) €
Hg (0,L) x Hg (0, L) that satisfies the following equations pathwise i.e., for each w € Q:

un+

L 1 L 1
/0 (77n+7 - Tln)ff’dz = (At)/() Vn+2¢dz> (24)

= u?l’

=

L L
/ (Vn+% — Vn) Ydz + (At)/ aznn—i_%az‘/f + azzn""—%aZZWdZ =0,
0 0

forany ¢ € L?(0,L) and ¢ € Hg(O, L).
Before commenting on the existence of the random variables n"+%, y"2 and their mea-
surability properties, we introduce the second subproblem.

3.2. The fluid subproblem

In this step, we update the fluid and the structure velocities while keeping the structure
displacement unchanged. See, e.g., [10-12] for the deterministic case. In the stochastic case,
however, there are two major difficulties that need to be overcome before we can even define
the fluid subproblem, which are both due to the fact the the fluid domain is a random variable
not known a priori.

(1) First, as the problem is mapped onto the fixed, reference domain O, see (23), the Jacobian
of the ALE transformation (12) appears is several terms. Since at every time step # the
Jacobian depends on the random variable ", we cannot introduce the maximal and
minimal displacements, as is done in the deterministic case, see [10-12], to obtain a
uniform upper and lower bound of the Jacobian for every realization. Hence, we introduce
an “artificial” structure displacement variable 1, using a cutoff function, that has suitable
deterministic bounds. This artificial structure displacement is defined and introduced in
the problem in a way that ensures the stability of our time-marching scheme. At every time
step, we then solve the fluid equations with respect to this artificial domain, determined
by nl, and then show in Lemma 5.7 that there exists a stopping time that is a.s. strictly
greater than zero, such that the cutoff in the definition of the artificial displacement is,
in fact, never used until possibly that stopping time, thereby providing a solution to the
original problem until the stopping time.
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(2) Second, for the problem mapped onto the fixed domain O, the divergence-free condition
is a problem when working with the mapped test functions, as we explain below. To avoid
working with the divergence-free test functions in the approximate problems, we relax
the divergence-free condition by supplementing the weak formulation by a penalty term
of the form é J div'u div"q, and work with artificial compressibility until the very end,
when we recover the solution to the original incompressible (divergence-free) problem by
letting & — 0. See Section 5. To explain why working with the divergence-free condition
is a problem in this stochastic setting, we note that for the fluid velocity defined on the
fixed domain O to satisfy the transformed divergence-free condition at the time step n+1,
the test functions in the fluid equations in this subproblem would normally depend on the
structure displacement n” found in the previous subproblem. This means that we would
use the test functions q"*! € % that satisfy div’*q""! = 0 (see the weak formulation
(23)). This dependence of the fluid test functions on 1%, which in our case is a random
variable, causes problems in the second part of the existence proof as we construct a new
probability space as a part of a martingale solution. It is not clear that all the admissible
test functions with respect to the new probability space would necessarily come from
the divergence-free test functions built in this subproblem. This is why we introduce
artificial compressibility via the penalty term mentioned above, and avoid dealing with
the divergence-free condition until the very end, when we recover the divergence-free
solution in Section 5.

Construction of the cut-off displacement. For § > 0, let ®; be the step function such
that ®s(x,y) = 1ifd < x,y < %, and ®s(x, y) = 0 otherwise. Using this function,we define
a real-valued function 05 (n") which tracks all the structure displacements until the time step
n, and is equal to 1 until the step for which the structure leaves the desired bounds given in
terms of §:

0s(n") := min O ( inf (7"(z) + R), In* + R||Hs<o,L>) , (25)
k<n z€[0,L]

where s € (%,2). Now we define the artificial structure displacement random variable as
follows:

maxo<k<n 05 (Uk)k

ni(z,w) =n (z,w) foreveryw € Q. (26)

Note that the superscript in the definition above indicates the time step and not the
power of structure displacement. A divergence-free relaxation via penalty. We introduce
a divergence-free penalty term and define the fluid subproblem as follows. Let A, W :=
wth — wn).

Then for ¢ > 0 and given U" = (u",v") € % we look for (u"+!,v"*1) that solves

— 77"+2
1 1
/(R+77:f) +1 un+2>q+5/ (n:+1 n:)un+1 q
+ E(At) / R+ (@™ —v"Hlre,) . Vgt
O

q— (un+l _ Vn+1rer) . Vn:q . un+1)

+2v(At)/(R+nZ)D":(u”+l) D ( )+—/ dlvn*u"Hdlv”*q
O
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L
+/ (1t _Vn+%)w
0

1 1
= (A1) <P?n/ 4z| dr — Pgut/ 9z
0 z=0 0

forany Q = (q, ¥) € % with
un+1

zzldr) + (GU", nH AW, Q), (27)

Ir = v le,.

Here,
tn+1

1
ir:t/out = E/t” Pin/out dt, divlu = tr(V'ha).

Remark 1. Observe that using the data from the second subproblem, we update " in the first
subproblem and not n}. This is crucial for obtaining a discrete version of the energy inequality
and a stable time-marching scheme.

We are now ready to prove the existence of solutions to the two subproblems. For this
purpose, we introduce the following discrete energy and dissipation for i = 0, 1:

i1 i i i i
E": = 5( /O R+ D" 2 Pdx + V2 1 o ) + 100" 2 1 ) + 102202 ||iz(0,L)),

Dl’l

. 1 . o
At/ (Zv(R + ™) D™ ("2 + —|div'7*u”+1|2> dx.
@) &
(28)

Lemma 3.1. (Existence for the structure subproblem). Assume that n" and v" are Hg (0,L) and
L*(0, L)-valued Fyn-measurable random variables, respectively. Then there exist Hg (0, L)- val-

ued Fn-measurable random variables n"+%, V1+3 that solve (24), and the following semidiscrete
energy inequality holds:

E": 4+ C" = E", (29)
where

1 1 1 1 1 1
L= IV =V gy S 1002 = 90"y F S 102202 = Bzen" 2o 1)

corresponds to numerical dissipation.

Proof. The proof of existence and uniqueness of measurable solutions is straightforward
thanks to the linearity of Equation (24) (see [6]). Furthermore we can write

nn-i—% _ nn

At
Using this pathwise equality while taking ¢ = V'+1 in (24); and using a(a — b) = %(| al® —
1b]? + |a — b|?), we obtain

1
V}’H‘j

1 1 1 1
V320 + I =V 200, + 180" 2 12 g ) + 100" F = 8an I
1 1
+ ||azz77nJrZ ||%2(0)L) + ||azz77nJr2 - 8zz’7n||i2(0’L) (30)

= ”Vn”%Z(O’L) + ”8277’1”%2(0)L) + ||BZZ77”“%2(O,L)-
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Recalling that u” = u"2 and adding the relevant terms on both sides of (30) we
obtain (29). ]

Lemma 3.2. (Existence for the fluid subproblem). For given § > 0, and given F-measurable

1 1
random variables (0" 2,v") taking values in % and v'"* 7 taking values in Hé (0, L), there exists
an Fi1-measurable random variable (w1, v1+1) taking values in % that solves (27), and the
solution satisfies the following energy estimate

1
E"™ 4+ D"+ C) < E"2 + CAH(P])? + (P,)%) + CAWIIG, IGU", iDIT, 1,12,

1 L
UG )W, U+ / W vz
0
(31)

where
n 1 n n+1 n2 1 t n+1 n+i2
Gy =~ (R—I—n*)(lu —u|)dx+— [V — T2 %dz
4 Jo 4 Jo
is numerical dissipation, and 0} is as defined in (26).

Proof. The proofis based on Galerkin approximation and a fixed point argument. For w € ,
introduce the following form on %/, which is defined by the fluid subproblem:

1 1
(L), (q,¥)) == / R+ (u — u”Jri) qdx + 3 / (HZH _ 77:) u - qdx
(@] (@]
+ (Az—t)/ R+ ") ((u—vre,) - VTiu - q— (u—vre,) - Viq - u)dx
(@]
+ 2v(At) / (R+ nl’)D”: (u) - D (qdx
(@]

At Lo . oph L + 1
+ — [ div*udiv*qdx+ [ (v—V""2)ydz
€ Jo 0
1 1
— (AD) (P;‘n / qz| dr—Ps, / 4z dr)
0 z=0 0 z=1

- (G(Un> n:)An W’ Q)
Using this form the fluid subproblem (27) can be written as (£, (u, v), (q, ¥)) = 0. Observe
that if we replace the test function (q, ) by U = (u, v), we obtain

L
(L2, v), (w,v)) = %/ (R+n!) + R+nlh) |u|2dx+/ Vidz
(@) 0

+20(AD) / (R+ n’)|D" (u) dx
O

At ot o2 L n+i nNy 3
+ — [ |div™ul°dx — ViT2vdz — | (R+n)u""2 - udx
€ Jo 0 o

1 1
— (A1) (P?n/ uy| dr— P’gm/ U,
0 z=0 0

1dr> — (G(U", nH AL, W, U).
z=
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We now estimate the right hand-side. For this purpose, note that the definition of nJ implies
the following crucial property

1
£(R+nZ+R+nZ+1) > 8.
Additionally, using Korn's Lemma we obtain for some constant K = K(O,») > 0 that
—1y)2 —1y)2
IV o 4% Do, = KID@o A% Do,

and thus
/ R + 7"V uPdx < K / (R + 7" [D" (w)Pdx.
O (@)

Additionally observe that n? € H?(0, L) implies that ||VA:7”” l1ee 0y < C(8). Thus, using the

formula Vu = (V" u)(VAZ’,,), we obtain for some constant, still denoted by K = K(8, n}}) >
0 that '

IVullf2 0, < K /O (R+n)|D™ (w)*dx.

Here the constants may depend on n.
By combining these estimates, we obtain

1
(aiﬂ;)(u’ V))(“) V)) Z 8”“”%‘2(@) + “V”iZ(O,L) + %HVHH%‘Z(O)
1 1
— V" 220 IVl 22 0,) — CllW" 2 I12¢0y ullr2 (o)

— Py joue 1l (0) — CUGU™, 0D I, wo,12) 1 An Wl 10Nl L2 0y 220,19 -

By using Young’s inequality and (20) this expression can be bounded from below as follows:

> [ulifp o) + V1201
C1 1 1
- (3_2 <||Vn+2 ||%2(0,L) + ||un+2 ”iZ(O) + |Pinn/0ut|2
F" B2 0y + 1V 1220 ) 1AW WG, +1)

where C; is a positive constant.
To apply the Brouwer’s fixed point theorem (Corollary 6.1.1 in [13]), we consider a ball of

radius p in % and consider (u,v) € % such that ||(w,v)|lz = \/Ilullfp(o) + ”V”il(o,L) =p.
Let p be such that

C 1 1
o> 5 (I B+ 10 A2 0y + (P
U0y + 17122 I AW, +1).
Then we see that
(< (u,v), (u,v)) > 0. (32)

Thanks to the separability of % , we can consider {Wj}f; an independent set of vectors whose

linear span is dense in %/ . Thus, using Brouwer’s fixed point theorem with (32), we obtain the
existence of Uy € span{wy, .., wi} such that |Ux| < p and £ (Uy) = 0.
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Then the existence of solutions (u, v) to (27) for any w € Q and n € N is standard and can
be obtained by passing k — oo.

What is left to show is that among the solutions constructed above, there is a Fyn+1-
measurable random variable which solves (27). To prove the existence of a measurable
solution, we will use the Kuratowski and Ryll-Nardzewski selector theorem (see e.g. page 52
of [14] or [15]). For this purpose, for a fixed n, consider « defined by

k(w,w,v) = k(u,v; oS (w), s (@), n"(w), n”+% (), Ay W(@)) = Z(u,v).
Using standard techniques, we notice the following properties for «:

(1) The mapping @ > k(w,w,v) is (Fp+1, B(Z'))— measurable for any (u,v) € %, where
B(%'") is the Borel o -algebra of %, the dual space of %/. This is a consequence of the
assumption (20) on G.

(2) The mapping (u,v) — & (w,u,v) is continuous.

Next, for w € 2, we consider
F(w) ={(w,v) € % : ||k (w,u,v)||9 = 0}.

We have already seen that F(w) is non-empty and one can verify that it is also closed in % .
Since % is a separable metric space, every open set H in %/ can be written as countable union
of closed balls K/ in %/ . Hence,

{w € Q: Fw) NH # 0} = UX {0 : F(w) N K # #}

= Uj’il{a) :inf  (Jlk(w,u,v)||97) = 0} € Fp+1.

(u,v)eK’
The second equality above follows as the infimum is attained because of continuity of k in
(u, v), and from that fact that each set in the countable union above belongs to F;u+1 because
of measurability property (1) of «. Hence, using results from [14], we obtain the existence
of a selection of F, given by f such that f(w) € F(w) and such that f is (Fyu+1, B(%))-
measurable, where B(%/) denotes the Borel o -algebra of %/. That is, we obtain the existence
of Fjnt1-measurable function (u"*!,v"*1), defined to be equal to f(w), taking values in
% (endowed with Borel o -algebras) that solves (27). This completes the first part of the
proof.

Next we show that the solution satisfies energy estimate (31). For this purpose, we
will derive a pathwise inequality involving the discrete energies. We take (q,¢) =
("1, v"*1) in (27). Note that typically in FSI, the test functions enjoy higher time reg-
ularity than the solutions (see Definition 1). However, due to discretization in time of
our stochastic FSI problem, at this stage we are able to take the test functions to be the

solutions themselves. Using the identity a(a — b) = %(Ial2 — |b]> + |a — b]?), we
obtain
1 1
z/ R+ ") (|un+1|2 _ |un+%|2 4t - un+%|2> n E/ (nz+l _ ’71) "+ 2dx
(@) (@]

" At .
+2v(At)/ (R+n;’)|D’7*(u”+1)|2dx+u/ |div7 a2 dx
O & O

1 [t 1 1
4 E/ |V1’l+1|2 _ |Vﬂ+§|2 + |Vﬂ+1 _ Vl’l-‘rilzdz
0
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1 1
= (At) (P;’n/ uttt dr — PZM/ uit! B dr)
0 0 z=1

+ (GU", H A, W, (UM —U™) + (GU", nf) A, W, U").

Observe that the discrete stochastic integral is divided into two terms. We estimate the first
term by using the Cauchy-Schwarz inequality to obtain that for some C(§) > 0 independent
of n the following holds:

[(GU™, nH A, W, (U™ —U™))|

z=0

1 2
= ClAWIIG IGU™ DI 2 + 5 /O R+ n) (0" — ") dx
1 L
+ —/ V" — iz
8 Jo
1 2
< ClAWIR IGU" DI, 00y + 3 /O R+ 1) (! — u")’ dx

Lt 1 12 1t 1 2
—i——/ (' — ) dz+—/ (V"1 — vz,
4 Jo 4 Jo

We treat the terms with Py, 0y similarly to obtain (31). This completes the proof of
Lemma 3.2. O

The following theorem provides uniform estimates on the expectation of the kinetic and
elastic energy for the full, semidiscrete coupled problem (uniform in the number of time steps
N and in ¢). Uniform estimates on the expectation of the numerical dissipation are derived
as well.

Theorem 3.3. (Uniform Estimates). For any N > 0, At = %, there exists a constant C > 0
that depends on the initial data, 8, T, and Pjy o, and is independent of N and € such that

(1) E (maxlSnSNE”) <GE (maXOSHSN_lE’H'%) < C.

Q@ EYN D <cC

B)EYNT [0 (R+ g —w'2)dx + [ v —v'+32dz < C.

@ BN Jy (18 = v foar™ = 00" + o™ = 0on ) dz < G,

where E" and D" are defined in (28).

Proof. We add the energy estimates for the two subproblems (29) and (31) to obtain:
E"™' £ D" + CF + CJ < E" + CAH(PL)* + (PL,)P)

(33)
+ ClAWIGIGAU, 9DIT 12 + [ (GU" D AW, UM
Then for any m > 1, summing 0 < n < m — 1 gives us
m—1 m—1 m—1 m—1
E"+ > D'+ Y Ci+ > G <E +CAtY (P + (Ph)?)
n=0 n=0 n=0 n=0 (34)

m—1

m—1
+ Y G gD AW, UM+ Y IGUS DTy 1AW,

n=0 n=0
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Next we take supremum over 1 < m < N and then take expectation on both sides of (34).
We begin by treating the right hand side terms. First we have

At Z(Pln/put) = ”Pin/out”%Z(o,T)-

Next we apply the discrete Burkholder-Davis-Gundy inequality (see e.g. Theorem 2.7 [15])
and write u"*2 = u” to obtain for some C(8) > 0 that
m—1

n n n
Elg}ﬂa;(N| Z:O(G(U ) AW, UY)|

1
2

N—-1
< CE [At S UG DI, 1y (H (VR+ "
/ 2
|: ( < H( R + 77* )u Z(O) + ||Vm||L2(0’L)>
x Z At (VR 1D 220, + 1712201 ) |
n=0

1 1
SIGR+00)WlIE o) + —||vO||iz(0 b
+5E max [H(\/RM*) o )+||v’"||iz(o,m}

2
Z(O) + ”Vn”LZ(O’L)>:|

| /\

[SIE

I A

1<m<
N—-1
+ CALE (Z IG/R+ D072 ) + ||v"||iz(O,L)) :
n=0

Also using the tower property and (20) for each n = 0, ..., m — 1, we write

E[IGU", )IIZ, g, 12y 1 An WIIE, ] = EIEUIGU™, 017, 1 121 A0 W, | F]]
= EUGU", DI, 1) B An W, I Fl]

= A(TFQE(GU", i) 2, 1)

< CAHTXQE[Y/ R+ nHu"lIFz o) + V' 1 20,1,

(35)
Thus, we obtain for some C > 0 depending on § and on TrQ, that the following holds:
N-1 N-1 N-1
0 2
E max E'+EY D"+EY CI+E Y Cf < CE + CllPusoul o
n=0 n=0 n=0
N-1
+ CAIE [Z |RF DU 0, + ||v”||§2(O,L)} (36)
n=0

+ E ma<x [“(M)

) + ”Vn”%Z(())L)} .
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By absorbing the last term on the right hand-side of (36), we obtain

B max (IR I 0, + 171220 = CE + CllPaout 2201

N—-1
+ 3 AE max (I/RF 10" 0, + 1712 )
n=1 -

Applying the discrete Gronwall inequality to E max;<,<n(||(y/R+ n?)u” IIi2 o T
1V"1172 g 1,)» We obtain
2 2 T
E max (I/RF 1Dz, + V1) < Ce
where C depends only on the given data and in particular 8.
Hence for E”, D" defined in (28), we have obtained the desired energy estimate:
N-1 N-1 N-1
n n n n
Elr;aSXNE —HEZD +EZC1+EZC2 (37)
n=0 n=0 n=0
< CCE® + 1Pinll32 0.7y + I1PoutllFa o,y + TeT).
O

3.3. Approximate solutions

In this subsection, we use the solutions (u”+%, 77”*5, v"*é), i = 0,1, defined for every N €
N\ {0} at discrete times to define approximate solutions on the entire interval (0, T). We
start by introducing approximate solutions that are piecewise constant on each subinterval
[nAt, (n 4 1)At) as

1
un(t) =", @) =1 k) =10 ww() =V vt ) = v (38)

Observe that all of the processes defined above are adapted to the given filtration (F¢)>o.

We also need to define the following time-shifted piecewise constant functions on ¢t €
(nAt, (n + 1)At], which will be useful in obtaining tightness results using compactness
methods:

1 1 1
ul—i\}(t’ ) = uVH- > T]ﬁ(t, )= 77"+ > V}\i_](t )= Vn+ .

Furthermore, we define the corresponding piecewise linear interpolations of the structure
displacement, velocity, and the fluid velocity: for ¢ € [¢", "] we let

t_tn t"+1—t t_tl’l tn+1—t
Nt ) = — o ——— ", () = — T "
NG = At N == At (39)
~(t)_t_tn n+1+tn+1_tn w(t)_t_tn n+1+tn+1_tn
VI Ar T NGB =TT At
Observe that

~ ~ N—1

NN s 0Ny 1y, #

— =V = 05 (" TV xem 1y = v a.e.on (0, T), 40

= ; 5" VR Ky = Vi 0.7,  (40)

where v}, was introduced in (38).
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Lemma 3.4. Givenug € L>(0), o € Hg (0,L), v € LZ(O,L),for a fixed § > 0, we have that

(1) {nn} (0%} and thus (N}, (0Y} are bounded independently of N and & in
L*(2;1%°(0, T; H3 (0, L))).

(2) {vn} {vf\]}, v {vﬁ} are bounded independently of N and ¢ in L2(92; L>°(0, T; L2(0, L))).

(3) {un} is bounded independently of N and ¢ in L2(2; L>®°(0, T; L2(0))).

4) {u;\;} is bounded independently of N and ¢ in L*(S2; L*(0, T; V) N L™ (0, T; L*(O))).

(5) {Vﬁ} is bounded independently of N and ¢ in L2(5L%(0, T H: (0,L))).

(6) {ﬁdiv"ﬁluﬁ} is bounded independently of N and ¢ in L2(Q; L2(0, T; L2(0))).

Proof. The proofs of the first three statements and that of (6) follow immediately from
Theorem 3.3. For the second statement, we write v}, (t, w,z) = On(t, a))vf\](t, , zZ) where we
set

N-1

On () = ) 050" (@) Ljgn gy (8).
n=0

Since On(t) < 1forany ¢t € [0, T] we obtain,
E[”V?\]”%OO(O,T;LZ(O,L))] S E[”V?\]”%JOO(O,T;LZ(O,L))] 5 C

In order to prove (4) observe that for each w € Q, V! = Vgl (VA;‘)”). Thus, we have,
S]E/ |Vt 12dx < ]E/ R+ 0| Va1 2dx = E/ R+ )|V u"t! - VAL, 2dx
o o o *

< COE / (R + ")V ™ Pdx < KC)E / (R + 0" D" u P,
O (@]

where K > 0 is the universal Korn constant that depends only on the reference domain O.
This result follows from Lemma 1 in [16] because of the uniform bound ||R+n} (@) | Hs0,1) <
%, for % < s < 2and every w € 2, which implies that for some C(§) > 0

1A% wioe < G [1(A%) lwre < G n=1,.,N,NeN,

for every w € Q. Thus, there exists C > 0, independent of N and ¢, such that

T N-1
IE/ / |VuPdxds =B At/ IVu™ ! 2dx < C(5). (41)
0o Jo — o

Statement (5) is then a result of statement (4) and the fact that, by construction, VI'S is
the trace of the vertical component of the time-shifted fluid velocity uy; on the top lateral
boundary O

4, Passing to the limitas N - oo

Our goal is to construct solutions to the coupled FSI problem as limits of subsequences of
approximate solutions as N — oo and ¢ — 0. The § approximation of the problem via cutoft
functions will be dealt with using a stopping time argument at the very end of the article. Our
approach is to first let N — o0, obtain approximate solutions for each ¢ > 0, and then let
g — 0.
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Thus, we first fix ¢ > 0 and § > 0 and let N — oo. For this purpose, we recall the bounds
obtained in Lemma 3.4 that provide weakly and weakly-* convergent subsequences. In order
to upgrade these convergence results to obtain almost sure convergence of the stochastic
approximate solutions, which is required to be able to pass N — 0o, we use compactness
arguments and establish tightness of the laws of the approximate random variables defined in
Section 3.2.

4.1. Tightness results

Given our stochastic setting, we do not expect the fluid and structure velocities to be
differentiable in time. Hence the tightness results, i.e. Lemmas 4.2 and 4.3 below, will rely on
an application of the Aubin-Lions theorem for the structure displacements and its following
variant for the velocities [17]:

Lemma 4.1. [17] Let the translation in time by h of a function f be denoted by:
Tf(t,) =f({t—h,"), heR.

Assume that Yy C Y C Y are Banach spaces such that Yy and ) are reflexive with compact
embedding of Yy in Y, then for any m > 0, the embedding

1
{weL?(0,T:)0) : sup — [ Thu — ull 20,73, < 00} > L*(0, T5D),
0<h<T h
is compact.

Lemma 4.2. Forany 0 < o < 1 the laws of u}f, and V;Q are tight in L*(0, T; H*(0)) and
L*(0, T; L%(0, L)), respectively.

Proof. The aim of this proof is to apply Lemma 4.1 by obtaining appropriate bounds for

T
/h IThuy — unlit2 o) + 1 Thvn = Wil )

N
= (AN Y I = u" g o) + IV =V N0 1 (42)

n=j

which are given in terms of powers of 4, for any & > 0, independently of N. For a fixed N, we
write h = jAt — sfor some 1 < j < Nands < At. More precisely, for 0 < o < 1 and any
M > 0 let us introduce the set:

— 2 LT 2 72 . 2 2
By = [(wy) € PO, T HO) x PO TLO.L) < Il o + M7,

T

_1

+ sup b~ / (1T = uliZo ) + 1T = V22, ) = M.
0<h<l h

Notice that Lemma 4.1, implies that By is compact in L?(0, T; H* (0)) x L2(0, T; L?(0, L)) for

each M > 0. Here in Lemma 4.1 we used )y = H' (O0) x H3 (0,L), Y = H*(O) x L*(0,L),

and )} = L2(O) x L?(0,L). To show tightness of laws of u;\r, and v;(,, we will then show that
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there exists C > 0 independent of N and ¢, such that

M
+ 4+ +2 +12
P((u);,vi) ¢ By) <P (uuNuLz(o,T;m» IR, o 3)

T
_L M
+ P( sup b~ / (N — w0 + 1T = Vi) ) > —)
0<h<1 h 2
C

< —.
VM

To achieve this goal, we will construct appropriate test functions for Equations (24) and
(27) that will give the term on the right hand side of the equation above. This has to be done
carefully since the solutions to the fluid subproblem (27) are defined on different physical
domains. That is, the velocity functions u¥, for any 1 < k < N, cannot directly be used as
test functions for the equation for u”, for 1 < n # k < N. Hence, we must construct the test
functions by first transforming u¥, such that appropriate boundary conditions are satisfied by
these test functions and such that they have “small” divergence so that the penalty term can be
bounded independently of . This is achieved by first “squeezing” u* appropriately (see also
[18], [19], [12], [20]). However, using the squeezed function directly as a test function would
result into testing n'” step Equation (24); with v, which does have the required H? spatial
regularity. Thus, we mollify the squeezed function to get the desired H? regularity.

Hence our plan is as follows: assume that, for any § > 0 used to define our stopped process
in (26), Os is the maximal rectangular domain consisting of all the fluid domains associated
with the structure displacement 7y, defined in (38), for any N and t,w. We fix an N and
w € Q,and forany 0 < k,n < N we push u* onto the physical domain OnI;—l, extend it by its
trace outside of O 41 to Oj, then "squeeze” it in a way that the L>-bound on its divergence is
preserved, and moﬁify it. The mollification is done in a way that preserves the zero boundary
condition for the radial component of the velocity on the left and right boundaries I'j/ous,
and the zero boundary value for the horizontal velocity component on the fluid-structure
interface I';». Then we pull it back to the domain O via the ALE map A;’g. This way we have

transformed u* so that it can be used as a test function for the Equation (27) for u”. Details

of the construction are presented next.
First, let t* = u¥ o A7} ,. Here we used “tilde” to denote the function defined on the
U

physical domain. For the purposes of mollification, we define W to be an extension of u¥
to the whole of R2, as follows:.

(©50,7),0) forz <0,

@k (L, 1),0) forz<L,

(0,v%) above Fnk—l,

0 everywhere else.

ﬁk,ext _

Then, we introduce the squeezing parameter ¢ > 1 and the following squeezing operator,
also denoted by o (with a slight abuse of notation):

W (z,r) =0, 00 = (0T (z,01), 75 (z,07)).

As mentioned earlier, notice that we scaled the r coordinate i.e. squeezed it vertically, so that
5e* assumes appropriate values on I",n in order for it to be used as a test function for the nth
equations. To improve the spatial regularity of its trace on I'; », we next introduce fi]; 5> aspace
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R+l (z)

1
Sh#

T <

(1+s2)2

z gt R
> |slope| = s =i %
(A) label 1 (B) label 2
Figure 2. (left) A realization of the vertical squeezing and the mollification operator. (right) Distance between the curves R+ 7!
K
and Rtfi.

mollification of X, where A denotes the space mollification parameter. The mollification is
obtained using standard 2D mollifiers. Based on this space mollification ﬁlé,)& for any given
N and n such that 1 < n < N, we define

~k, ~k
uaﬁ = uG,}\. (¢] A(;])g, (43)
where the parameters A > 0 and o are chosen as follows:

(1) The random variable o is defined so that the squeezed k" fluid velocity function lies
entirely within the n" fluid domain, see Figure 2:

R+ nk
0= max max sup ———————;
I=n=Nn—jsk=nze[o,l] R+ n! — 8hi
(2) The parameter X is then chosen to be small enough so that mollification with parameter
A preserves the kinematic coupling condition, see Figure 2:
A ohi (44)
V14382

Due to these choices of o and X, we will be able to obtain the desired estimates in terms of
the powers of the translation parameter h, as we shall see below. In particular, we observe that

k 1
for this choice of o, the vertical distance between R + n} and # is at least $h1. Moreover,
thanks to the mean value theorem and the property of the artificial structure variables ¥, that
1
3h1

which motivates our choice of A, see Figure 2.

Remark. Before we continue, we note here that we additionally need to “squeeze” the
function W horizontally so that when we mollify the function to obtain the desired
regularity, the mollification does not ruin its 0 boundary value for the radial component at
the boundaries I';;;/ 04 and, for the same reasons, vertically near the bottom boundary I', as
well. This can be done using the same argument, i.e., by choosing the horizontal squeezing
parameter, say Gporizontal> and the mollification parameter A appropriately small. The resulting

10:n% 1L 0,0) < % forany n < N, the distance between these two curves is at least
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function is in H*(Os) for any s < % and thus the estimates presented below can be obtained
the same way. However, we choose to leave this part of the construction out of our discussion
for a cleaner presentation.

We now define the structure equation test function vf{ to be the space mollification of v
where v5¢** is the extension of vk to R by 0. Observe that Brvll{ = (3,01, = 0.

Hence, we have that for any n — j < k < n, the transformed fluid velocity uf;'; satisfies:

k.ext

k,
Idiv™ st 20y < C(8) ||diviu+! l2oy,  and wlli|r = (0,v5).  (45)

Recall that our goal is to use the modified fluid velocity and structure displacements
constructed above as test functions for our coupled problem (24) and (27), based on which we
will obtain the desired estimates of the right hand-side of (42) in terms of power of 4. For this
purpose, we will need the following estimate of o in terms of powers of h: Foranyj <n < N
observe that we have

R+ nf nﬂi—n>’2+5h%
0—1= max max sup ————— —1= max max sup —————
1<n<N "—J<k<”ze[0 LI R+ 77* _ 8]’14 1<n<N n—j<k=<n ze[0,L] R + 77 _ 5}14
1
SUp_epo,r) 1M — nk| + 8hi ~ 1
< max ma . < C(= Dh4,
= 1 ZheN n_jgkxgn b) - (5 iy ”c(”%(o,T;Lw(o,L)) +D
(46)
~ 1.
where we have used || Thns — nylieonxoL) =< ”n}k\]”CO’%(O,T;LOO(o,L))h“ in the last

inequality.
In the estimates below, we will also need the estimates on the difference between the
transformed and the original fluid velocity functions. For this purpose, we let p be the 2D

bump function. Then, for any k < N, s < % we find:

2
I =T, = [ | [ 0@t i) - @ o a
B(O,1)

B / B(0,1)

~k,ext "‘kext 2
+ A
/ / |(@* (o (x + Ay)) — - (x))] 0 + Ay) — x> dydx
0s JB(©,1) lo(x + Ay) — x|>+3

< C(s,8,L)((0 — 1)*T™

kext ~k,ext 2
(o (x+Ay)) —a"(x))]
+ (or)FH? / / dydx.
@O J s Jon o (x + Ay) — x2+% Y

PO (0 (e + 1) — T )y

After the change of variables w = o (x + 1y), we obtain:
< C(s,8,L) ((0 — )*THg?t%) g~ 1x 2

| (uk ext (W) ""k ext (x)) |2
/Oa /Om X dwdx

)2+25

ﬁk ext

||u()' Y ”LZ(O )y =

(o0 —1

= C(s,8,L) ( 3

1+2s k,ext
o >||u lory @)

where O;’A =0 (0s) + AB(0,1).
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. ~ A
Fors < %, we can estimate the H® norm of w6 on (9‘7 as follows:

~kext
T oy = COO o) + Iy )

where C depends only on § (see [21]). Thus, foranyn —j < k < nands < %, our choice of
o that satisfies (46) gives us,

, k G _ ket ~kext
luy’y — w20y < b, —u** 2o, + lu o (A — A ) Iz o)

- ((O’ _ 1)s+1

1 ~ _
——o*" +AS) ¥ 1k 0y + 195 1200 107 = 15 o 0,0)

k
u
€1 (0, T (0, L)) R (@)

(o — 1)s+1 1 1.
- (Tgsﬂ + 25 ) 1l o) + B 17
Zs-i-2

¥ e[l 0)-
C>4(0,T;L>(0,L))

(48)

s 1
<hs (max{ < Iyl }> el o) + B IR

1
1 (0,T;L®(0,1))

This estimate of the difference ||u§’3 —uF ll12(0) given in terms of powers of h will be used
below in (4.1) to estimate one of the integrals contributing to the final estimate of the time-
shifts of uy.

Likewise, the following property of mollification along with (44), will be used in (54):

s 1
IV; =Vl < 21 0won < B I, foranys < -, (49)
We are now ready to multiply (24)3 and (27); by the test functions q, and v, respectively,
(see also [18]), where q, and v, are defined by

n

Qu = (@ ¥u) = | (AD) Z u, an Yk

k=n—j+1 k=n—j+1
After adding the resulting equations, we obtain:

n

/O (R+nHu ™t — R4+ au”) | A Y wh

k=n—j+1
L n
+/ L= | At Z v'; (50)
0 k=n—j+1
1 n+1 n n+1
o k= n—j+1
At n n
+ (AD) / div™u"t1div'
o k= n—]—i—l

T (ADYI (" v e, | AL Z ubn ]
k:n—j—H
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n
k,
+2v(At)/(R+n”)D’7*(u”+1) DAt Y ulh
k=n—j+1
n n

L
+(At)/ oo [ At Y A Fan oL [Ar Y A
0

k=n—j+1 k=n—j+1

1 1

— o (2 [ - [ a2 e

z=0 z=1

We will apply Z _; to (50) and estimate the terms to get the desired estimate for the time
shifts. We start by focusing on the first two terms. Applying summation by parts to the first

two terms, we obtain:

) + (GU, ) AW, Qp).

n

N
- Z/O (R+ e — R+ gHu") [ At > ulh
n=0

k=n—j+1

n

N L
—Z/ = | At Z vll{
o0

k=n—j+1

L .
(At)Z(/ (R+n")u”(ugk—uzkjn)dx+/ v”(vZ—v:_])dz>
0
N
_/(R+772]+1)uN+1 At /VN At Z
(@]

k= N —j+1 k=N—j+1

Here the first term on the right side can be written as

(A) Z (/ R+ nMHu"(u" — u"F)dx + / R+ nHu" @l —u" — (u) " — u"—f))dx>

(51)
N L , L , .
+ (A?) Z/ VW = v Ndz +/ Vi) — v — (v:_] — V"))
n=0"9 0
N o ) .
f) Z (5/ R+ (0" = [0 7P + o — u"—f|2)dx)
—0 (@]
+ (AD) Z ( / (R+ np)u (u)} — (ujj;j’" — u"—f))dx>
+ (A Z %/ (V' = W'+ ="z
n=0 0
L ) ‘
+/ VI — v — (v:_] — V"),
0

where we set u” = 0 and v" = 0 for n < 0 and n > N. Notice that the terms on the right
hand-side are written in terms of time-shifts and will be used to obtain the desired estimate.
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To estimate the terms on the right hand-side of (51), we observe that the terms containin
& g
[u"|?> — |u"/|? can be estimated as follows:

N 1 ‘
= <At)2<5 /o R+ n)(u"* — |u”—f|2>dx>
n=0

1 +i
= (A /(R+n*)lu | dx+2/ (it =y )" Pdx
n=N—j+1
N—jn+j—1
=—<At) Z / R+yDlu"Pdx+ > Y / [(ADBs (7™ Ve 3] ju" 2
n=N—j+1 n=0 k=n
1 N—jn+j—1
<2 (a0 5 / R+l Pdx+ (A0 Y S I o w2 o
n=N—j+1 n=0 k=n

N
2 k+1 ny2
<h (12}2( /(R+77*)|“ |“dx + I;?al\);( 1||V 2{lr20,1) E (At) [ ||H1(O))

n=0
We now want to show that the probability P (|I;| > M) for any M > 0 is bounded by an

expression which depends on A for m > 0 and M. For this purpose, we will use the fact
that for any two positive random variables A and B, we have that

M M
{a):A—i—B>M}§{w:A>?}U{w:B>?}. (52)

We will use this property repeatedly throughout the rest of this proof. Property (52) implies
that

M M
P(|A| + |B| > M) < P(|A| > 7) + P(|B| > ?).

Similarly we also have,

P(|AB| > M) < P(|A| > vM) + P(|B| > vVM).

Hence,

M
P (|| > M) 5[?’(11 max /(R-i—n”)lu |2dx > ?)

M
n
—HP’(h max R 2||L2(0L) g(At)”“ ”H‘(O)zf)

M
<P (h max /(R+n )|u”| dx>—)
1<n<N 2
; d ZN M
b 2
P («/_0<Ikn<2}\)[(_1 |v +3 ||L2(0,L) > ?) +P (\/En_o(At)”un”Hl(O) > ?>

h
\/E nn2 k41 N \/E
+1 ny2
= \/ME max ||ll ||L2((9) +05maX,1 ”V 2 ||L2(0,L) + E (At)”u ”Hl(O) <C

+

1<n<N M
<n< k<N "—0 M
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Next, we estimate the second term on the right hand-side of (51). Thanks to (48), we see that
forany s < % and for some C that depends only on T and §, we have

N
he=ien ) ( [ —w =l u”—f»dx) |

< C(AD) Z " ll20) (I = w"ll20) + llwy " = "z o)
n=0

N 2
2543 k2
< Ch1 max{1, — 2 max ||u” At u . (53
LIy mas el (( > ||H1(O)> (53

n=1
Hence, we take s = }L and use the embedding

W20, T; L0, L)) N L2(0, T; H2(0, L)) < C%3 (0, T; H2(0, L)) < C%3 (0, T;L°(0, L))
to obtain,

1

h3z
P(L| > M) < — E
M:2

N
nn2
<|| R0 oy 1m0 0 o)+ <<At)20||u ||H1(@)>>
n=
W3
<C—.
M2

Similarly, the third term on the right hand-side of (51) can be estimated using (49) to obtain
N L )
I3 := |(AD) Z/ VIV — v — (v T =)
n=0 0

N

< CDAZ max V'l ((At)va 1%, (L)> . (54)

n=0
Hence, by our choice of A, see (44) above, we know that A ~ h'/4, and so we get

hl
P(I3| > M) < —E<

1

hs
Jmax (V201 + (AD X(j) V12, OL)) <co
Now we go back to (50) and estimate the penalty term. Thanks to (45), we observe that

At " “ "
4= (8—)2 /O divu" | At Z div”*(u';’)"k) dx
n=0

k=n—j+1

(At) - %
Z”dl"n*“nH”LZ(O) an Y- ||di"n:(“]ccr’,nx)||i2((9) Vi

n=0 k=n—j+1

< CVhTo ( Zudl %(u”“)nLZ(O))
n=0

N
~x 1 (AD) s 1y 12
sthT(1+||nN||Co,i(O,T;LW(O,L))W)(—8 Zolldw @0 ) -
n=
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Hence,

Vh 1 (A t) +1
Py > M) = 7E[L+ ] vl °i<onoo<omh4] + E Z Idiv” @) 17, o,

n=0
1

Chx
S 1
Mz

Notice that due to Theorem 3.3 (2), the constant C in the estimate above does not depend on
Nore.

Next we estimate the term in (50) appearing after the penalty term. For this purpose, notice
that the continuity of the embedding H 2 (0,L) < LP(0, L) for any p < oo implies

1T I3 (05) < C(8) <||uke’“||p(o o v ||L3(0L)> < CO) (¥ (lgr o) + IVF It on)

(55)
Hence, for some C > 0 that depends only on §, we obtain

n

N
I = |(AD Y b [ w™ v e, (At Y ubt

o,
k=n—j+1
1
N n 2
n k,
< VRAD Y I = v e o) IV o) | A D g I o
n—= k=n—j+1
n+1 e ni  n+l
< Vh <At>Z(||u Iy + 1V 3 o)) V50" 2oy
n=0
n 2
kn 2
At Y w0
k=n—j+1
N 2
< COWVh ((At) > ||u"+1||§1(o)) :
n=0

We used (55) in the last step of the estimate above. Hence for any M > 0, we have

1 1
h3 h3

P(ls| > M) < —E((AD) )  [u"T|? <C—.
5 e < Z HY(0) ME

n=0

Similar calculations give us that the term just before the penalty term in (50) can be estimated
as follows:

n

Ig = Z/ n+1 n un+1_ At Z “ﬁrf\ dx

k=n—j+1

1
N . n 2
1 k,
AD Y IV 2 pen ™ iso) | (A D e e, | VA

n=0 k:n—j+1

IA
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N
1
< CVAT max [[vV*"2 1200 <
1<n<N ’

nn2
(ADY u IIH1(0>> :
n=0
Hence,
B N 1
4 1
P(Is| > M) < —E [ max ||»*"2 + (At w2 < C—-.
(el = M) < (KM V"2l + € )% I o) ) < €
Next, we focus on the integral in (50) which contains the second-order derivative of
displacement 9.;n"*!. Since [|¢1 12 < 5 (14|12, we obtain
N L n
— n+1 k s n n
I; .= |(Af)2/0 0zzn"" 0z | At Z vy || =CT ISTLEEXN(IIGZZU 200 V" l220,1)
n=0 k=n—j+1
Now since A ~ h%, we have

1

1

2 n 2 ny 2 2
I['])(17 = M) =< WIE (0151}135)(1\] ||azz77 ||L2(O,L) + Oma<XN ”V I|L2(0,L)> < CM

What is left to estimate in (50) are the integral containing the transformed symmetrized
gradients and the stochastic term. We first focus of the term with the transformed sym-
metrized gradients. Similarly as before, since ||¢; |1 < Cloll 12, the term with the trans-
formed symmetrized gradients yields:

N n
Iy :=|(At)Z/ DRut (At Y D) | dx|
o :
n=0

k:n—j+1
N

IA

n

n nok,
(AD Y ID™ ™ o) [ (A Y ID™ @) llz o)
n=0

k=n—j+1
N

A

n

1 n
~(A0 Y ID"u o) [ (A0 Y el + 1V o
n=0

k=n—j+1
N
Ch (la™|
— max u 2
A \0<n<N L

©) + I l20n) (A0 > D™ (u““)an(O))

IA

n=0
1 . Lo
Hence, again, since we have A ~ h1, Young’s inequality gives us,

3

1
Py > M) < B[ max (Ju”lf2 0, + 1V¥172(5,))]
3

n=0

hi N
+oE ((At) > I (u”“)niz(@)

3
1

<C—.
- M
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Finally, we treat the stochastic term using the same argument as above. To bound the
expectation, we use Young’s inequality and the argument presented in (35) to obtain,

N
E (Z (GU", nH AW, Qn)l)
n=0

N n 2
k, 1
<E| Y IGU 0D w1 8aWlluy [ (A0 D7 10120y + 11720 | B2
n=0 k=n—j+1
. N n
1 k,
< E| Y IGUS DI, a1 e WG, + [ (A0 D7 05 a0y + 11120
n=0 k=n—j+1
1 N 1
< h2CE, TrQE Y (ADIW"I}2 0 + 1V'I7291)) < Ch2.
n=0

By combining these estimates, we are now in a position to show that the laws of the random
variables mentioned in the statement of the theorem are tight. For this purpose, we recall the
definition of the set By for 0 < o < 1 and any M > 0:

— 2 & %4 2 T2 . 2 2
BM .—{(ll, V) €L (0, T,H (O)) x L (0: T,L (0>L)) . ”u”LZ(O,T;Hl(O)) + “V”LZ(O,T;H% O.L))

T

_1

+ sup h 3 / (||Thu — “”iz((’)) + | Ty — v||%2(O’L)) < M}.
O<h<1 h

Observe that, due to Lemma 4.1, By is compact in L2(0, T; H*(0)) x L2(0, T; L?*(0, L)) for
each M > 0. Now, an application of Chebyshev’s inequality gives the desired result:

M
+ .+ +2 +112
P((“N) VN) ¢ BM) =< P (”uN”LZ(O,T;Hl(O)) + ”VN”LZ(O,T;H% O.L)) > ?)
e + + 12 + _ 12 M
+P( sup 7 [ (1Tl = wli o, + TR = Vi) > 5
O<h<1 h 2
C
f— m)
where C > 0 depends only on 8, TrQ and the given data and is independent of N and ¢. This
completes the proof of Lemma 4.2. O

Next we will state the rest of the tightness results. These will be used in Section 4.2 to
obtain almost sure convergence via an application of Prohorov’s theorem and the Skorohod
representation theorem.

Lemma 4.3. For fixed § > 0, the following statements hold:

(1) The laws of {1 }Nen and that of {115 }neN are tight in C([0, T1, H*(0, L)) for any s < 2.
(2) The laws of{u;\r]}NeN are tight in (L*(0, T; V), w).
(3) The laws of {v};}nen are tight in (L?(0, T; L*(0, L)), w).

Here w denotes the weak topology.
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Proof. To prove the first statement we observe, thanks to Lemma 3.4, that 77y and 7y, are
bounded independently of N and & in L?($2; L*(0, T; Hé (0, L)) N W(0, T; L?(0, L))). Now
the Aubin-Lions theorem implies that for 0 < s < 2

L*°(0, T; H3 (0, L)) N Wh*°(0, T; L*(0, L)) C C([0, T1; H*(0, L)).
Hence consider
K =={n € L*®(0, T; H3(0, L)) N WH°(0, T; L*(0, L)) :
”n”iw(O,T;Hé(O,L)) + 1l 0152200y < M-

Using the Chebyshev inequality once again, we obtain for some C > 0 independent of N, ¢
that the following holds:

~ ~ M - M
P [ﬂN ¢ ’CM] = P |:||nN||i°O(O,T;H§(O,L)) > ?] +P |:||nN||%/V1’°°(O,T;L2(O,L)) = 7:| (56)

C
~ 12 ~ 12
< WE |:||77N”L00(0,T;H§(0)L)) + “nN”WLOO(O,T;LZ(O,L))] =

Similarly to prove the second statement, we use the Chebyshev inequality again to write for
any M > 0,
PUN 00 > M1 < B ] < 5
NIL2(0,T3V) =2 Nzt = 32
The third statement is proven identically. This completes the proof of the tightness results
stated in Lemma 4.3. O

So far we have been successful at obtaining tightness results only for a subset of the random
variables defined at the beginning of Section 3.2. However, when passing to the limit, we will
also require almost sure convergence of the rest of the random variables for which we will use
the following lemma.

Lemma 4.4. For a fixed § > 0, the following convergence results hold:

. T . T ~
(1) limy o Efo lun — u]—\i}”iz(@)dt =0, limy. Efo lan — uN”iz(O)dt =0

. T _ . T, + =~ 2 _
(2) imy— oo E f()T Inn — ’7N|IH2(0 L)dt =0, limy_,E fo (N nN”H%(O,L)dt =0
(3) imy— oo Efo ”771? ”H2(0 = =0

. T . T
(4) th—>OO Efo ”VN - VN”LZ(O,L)dt - O; th—)OOEfo ”VN - Vﬁ]”iZ(o)L)dt =0.

Proof. Statement (1); follows immediately from Theorem 3.3 (3). We prove (1), below. The
rest follows similarly from the uniform estimates stated in Theorem 3.3.

1

IE/O lay — U172, dt = EZ/ —||(t Y 4 (=t — A} o dt
N-—1 1 N 2
t—t CT
_ n+l _ .12 il
=E) |lu “”U(@)/tn < < ) dt < == =0, N oo
n=0
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While formulating an approximate system in terms of the piecewise linear and piecewise
constant functions (38) and (39), respectively, defined in Section 3.2, we come across typical
error terms generated as a result of discretizing the stochastic term. To obtain the final
convergence result, we need estimates of those terms. We derive those error terms and obtain
their estimates next. Observe that for given N we can write

8~*
=N+ — t”)—g?], te (" ",
and that the same equation holds true when n* is replaced by u. This gives for each w €
and t € (t",t"*1) that

I(R+7Puy)  duy oMy
= R+ nx 2uy —
a9t 81‘( +ny) + Bt(uN uy)
N-1 1
= —(u"+1 — u")(R =+ T]Z) X(t",t"*l) + 'V}k\](zﬁN — IIN).

t

(=)

n=

By integrating in time both sides and adding the equation for vy from (24), we obtain for any

(V) € %:
((R+ T )un(®),q) + (Wn(t), ¥)

L t rL
= /(’) uo(R + o) - qdx + / voydz — / / (azn$82¢ + azzmtp 0z )dzds
0 0 JO
N-1 .t n+1 n L o+l n
(""" —u") / (V2 =)
E n ——(R+1n}Hqd ———~Ydz)d
+ nzo/o X(t Niany! <‘/(9 At ( + n*)q X + . At w Z) S

t
—|—/ / v (2Quy — uy)qdxds
0 JO

=: (uo(R +10),q) + (vo, ¥) + (L (1) + (1) + I3(), Q). (57)

We estimate the right hand-side to be able to pass to the limit as N — oo. We start by
considering the integral I. Thanks to (27), I, on the right hand side is equal to

1 t
(L(0,Q = —5 /0 /O viuhqdxds
t * * 1 t * *
— 21)/ / (R + n})DV (u;\r,) - DN (q)dxds — —/ / div”Nu;\r,diV"quxds
0 Jo €Jo JoO
I " "
—5 / / R+ n})((uy; — viire,) - VINuf - q — (uy; — viire,) - VNG - u))dxds
0 JO

t 1 1 t
+ / (Pm / gl dr—Po / ” dr> ds + / (Gluy, v ) AW, Q) + (Ex (1), Q)
0 0 z=0 0 1 0

=: (I1(t) + () + L3() + Da(t) + I5(t) + Ls(t) + En(t), Q),

=

(58)

where the error term is given by

N—1

t—t" t

En(t) = E ( A G™, V", nH AW — G(um,vm,n;")dW> Xem g1y
tm

m=0
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We will study the behavior of each term on the right hand-side of the expression for I, as
N — oo. We start by showing that the numerical error term Ey approaches 0 as N — oo.
The remaining integrals will be considered in Lemma 4.6 below.

Lemma 4.5. The numerical error En of the stochastic term has the following property:

T
]E/ ”EN(t)”iz(O)xLz(O,L)dt —0as N — oo.
0

Proof. First, for any N, we have

N—-1 m t
En(t) =) < G YA W — G(um,vm,nf)dw> Xpem i1y =: Ex + Ex
tm

We estimate E}V and E%\] Recall our notation L? = L?(O) x L?(0, L). Observe that E}V satisfies
(see also (35)),
N-1 1

n.n n 2 t—" Zd
E 1G™ v, ) AnWIii2 | |“dt

T
E / IEN(DIf.dt = E
0

z

N—-1
At
=E) GV i) A WG — < E Y IG@ VDI, ) | A WG, At

n

Il
)

n=0
N-1

= (AD’E Y G, v, i) 12, 2y < CAL

n=0
where C > 0 does not depend on N or ¢, as a consequence of Theorem 3.3.
To estimate E3;, we use the It6 isometry to obtain

il

T N-—1
B[ Igoka-Y [
0 =0 t"
N—-1 g+l
—F Z
n=0

t
|| / G, v, ) dW |, dt
t?l

t
no.n o ny2
/tn IG", v ,n*)||L2(U0;L2)dsdt

tVl
1 N-1

= SE X IGQ" v, )7, gz (AD? < CAL.
n=0

Thus, as N — 0o we obtain E fOT ”EN(t)”iZ(O)xLZ(O,L)dt — 0. O

To be able to pass to thelimita N — oo in the weak formulation, we consider the following
random variable:

Un(®) = (R + Ty (D)n (1), I (1) — En(8), (59)

and study its behavior as N — oo. We prove the following tightness result, Lemma 4.6, for
the laws of Uy. We do this by employing appropriate stopping time arguments (see [22] for a
similar argument) and thus bypass the need for higher moments.

We begin by defining

U = U N (H*(O) x Hj(0,L)). (60)
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where 7%/ is given in (19). Next for any 1 CC %, we denote by 11" the probability measure
of UN:

uy’ =P (Uy € -) € Pr(C(10, T, #))),

where Pr(S), here and onwards, denotes the set of probability measures on a metric space S.
Then we have the following tightness result.

Lemma 4.6. For fixed e > 0 and § > 0, the laws {M?\])V}N of the random variables {GN}N are
tight in C([0, TT; 7).

Proof. Recall that the random variables {Uy}y consist of two parts, a deterministic part and
a stochastic part. We will show that the stochastic terms belong to

By = {Y € C([0, Tk #)s | Yl weaco, i) < M}
while the deterministic terms belong to

By := (X € C(0, T ) IXlln o,y < M)y

for some M > 0 and @ such that 0 < o < % and g > 1 where g > 2. To do this, we first
define
By := By + B3,

and note that

5
{Uy € By} 2 (I + ZIZ,i +1; € BYY N L € B},
i—1

where the integrals I}, I>; and I3 are defined in (57) and (58). This implies that for the
complement of the set Bys we have,

5
ny' (By) <P <||11 +Y b+ Lllg o2 > M) +P <||12,6||WW(0,T;02/1’) > M) :

i=1

We want to show that for some C = C(8, T, ¢) > 0 independent of N we have

C
“YBy) > 1— —.
MN(M)_ M

To do this, we need to bound the integrals I;, I ; and I3. These bounds rely heavily on the
uniform bounds obtained in Lemma 3.4. To estimate these terms, we introduce the following
simplified notation: supg, := supge, |q| =1

We start with I;. The estimate of I; follows by observing that there exists some C > 0
independent of N, ¢ such that

T L
E|latll(t)||]%2(0,T;”2/1’) <E SﬁPQ/ | / (3z77]§3z1// + azznxazz‘//)ddzdt
0 0

T
<E [ I, < C
0 ,
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Using the continuous Sobolev embedding H?(0) — L®(0), we similarly treat I ; 4 I,
EN10:(I21 + I3 lz200, 12

1
2

T
_ ~ 1
<E (supQ / V1200 128N = uy = Zu0) 2 0 ||q||iw(o)dt>
0

=

* 112 ~ 2 2 +12
<E (”VN”LOO(O’T;LZ(O)L)) (”uN”LOO(O,T;LZ((’))) + ||uN||L°°(O,T;L2((’))) + ||uN||L°°(0,T;L2((’))))>

* 12 ~ 52 2
= (]E”VN”LOO(O,T;LZ(O,L)) (E”uN”LOO(O,T;LZ((’))) + E”uN”LOO(O’T;LZ(O))

NI—

+2
+Elluy 7 (o,T;LZ(O))))
<C.

To estimate I, we first recall that we can write V/Nq = Vq(VAZ’* )~ L. Now we note that for
N

3 < s < 2 we have that ||R + nxllEsor) < % for any w € Q and t € [0, T], which implies

2

that sup,c(o 1 ||(VA§7";<V)—1||LOQ(@) < C and thus,
sup [V'Ngllpzo) < ClIValzo) Yo €, (61)
te[0,T]

where C depends only on §. The same argument gives us that

sup [|ldiviNgll 20y < sup V2[IV'Nqli20) < ClIValio)-
te[0,T] te[0,T]

Thus, for I, we obtain the following bounds:

T
E”atIZ,Z(t)||]%2(0’T;02/1/) =< E <SﬁPQA ||D'7Nu;',||i2(o) ”Dan”iZ(O)dt)

T
< CO)E (sﬁpQ /0 ||D”Nu§||iz(o)||Vq||i2(o)dt) < C).

To estimate I, 3, we note that for a fixed ¢ > 0, Lemma 3.4 implies the existence of a constant
C dependent on § such that:

1 . ro.. .
Bl () 1720127 < CO) 5 E (supQ / ||dwnNu;||g2(O)||dwan||gz(O))
0

1 L C(5)
= C(5)8—2E (/0 ||d1VnN“E\FJ||%2(o)> < —

&

Observe that the estimate above depends on ¢ and hence will not be available in the next
section when we pass ¢ — 0. The integral I, 4 can be estimated similarly after the use of the
Ladyzenskaya inequality [23] as follows:

T
BIaa(0)201:09) < COE (sipq [ ((uhizco + 1 lizn)
0

D —

* % 2
V5wl oy a0y + IV qlls o Il luso))) )

T 2
< CO)E ( / (ludllzo) + ||v§||Lz<o,L)>2||Vu§||iz(o)dt)
0
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T , 3
+ + +
< COE | (Il llze o120y + vyl o ms1200,00)) (/ ||VUN||L2(@)dt)
0

T 2
+112 +112 I
f C(S) (E (”uN”LOO(O,T;LZ(O)) + ”vN”LOO(O,T;LZ(O,L))) ]E (/0 ”VUNHLZ(O)dt>)
< C($).

The treatment of the term I 5 is trivial.
Hence, by combining all the bounds derived so far we obtain the following estimate for the
deterministic part of Un:

5
P <||I1 + le,i + 13||H1(0,T;ﬂ2/1’) > M)

i=1

5
<P <||11 o) + |l ZIZ,i||H1 oz T 1lm o) > M)
(62)

i=1

A

5
1
< E (Ilh o + Y Iillm oz + ||13||H1<0,T;%1/>)
i=1
C(s,
< @.8)

M
To treat the stochastic part of Uy, we estimate the stochastic term I, ¢ as follows. First we
use the fact that for any 0 < o < % and & any progressively measurable process in

LP(S2; LP(0, T; L, (Ug; X))), we have (see [9],[5]),

. T
E| /O QAW |Yyaa,rx) < CE /0 IPIT, (1 x4 (63)

To deal with the g™ power appearing in the inequality (63), we define the following stopping
times:

Ty = inf{ sup |[(un,vN) |2 > M} A T.
20 sef0,1]

Observe that, since (uy, vy) has cadlag sample paths in L?(0) x L*(0, L) by definition, and
since the filtration (F;)s>¢ is right continuous by assumption, 7) is indeed a stopping time.
Using the Chebyshev inequality, we then obtain that

P (”/ G(uNs VN> n]ﬂi])dW”W%q;(o)T;%/) > M)
0
ANTM
=< P (” / G(UN, VN> n}t])dW”Wa’q(O,T;%{) > M’ ™ = T) 4+ ]P)(TM < T)
0
ANTM
< P <|| / G(uN> VN> n}k\])dW”Wa'q(O,T;/’Z/{) > R) ™™ = T)
0

+ ]P’( sup [[(un(®), v (D) |l2 = M)
te[0,T]

1 ATM N J q 1 2
- ME i 0 N, v MR AW a0 150 ) + WEt:[l(lfT] | (an (1), vN (D) [I12-
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Notice that 3, and (un, vy) are (F;)s>0-adapted. Hence using (63) and (20), we obtain the
following upper bounds for the first term on the right hand side of the above inequality,

C TAtm -
= W}E (/0 ”G(uN) VN> r)N)HLz(Uo,Lz)>

C TATtMm q q q
%
MqE (A ||77N||LOO((),L) ”uN”LZ(O) + ”VN”LZ(O,L)>

CTM9—2

< ———FE[ sup llunllis e + IvN12200 )
SAMA «el0.1] L2(0) L2(0,L)

Hence for small enough § > 0, we have

P ” / G(“N’ VN> ﬂ}k\])dW||W"vq;(0,T;ﬂ//’) > M < Z]E sup [”uN”iZ(O) + ”VN”%}(O L)]
0 SIM= " seqo,1) ’

(64)
Finally, the uniform bounds obtained in Lemma 3.4 imply

CT
P (||Iz,6||wa>EI(o,T;%l’) > M) < s (65)

To sum up, for some C = C(8, T, ¢) > 0 independent of N we have obtained that

C
By > 1— —.
uy (Bm) = v

Now since By is compactly embedded in C([0, T1; #{) (see e.g. Theorem 2.2 [5]) we conclude
that {uy"} is tight in C([0, T1; #7). O

Corollary 4.7. The following weak convergence results hold:

(1) The laws of the random variables (u;(,, Vlf]) converge weakly, up to a subsequence, to some
probability measures on the spaces L?(0, T;L2(0)) x L*(0,T;L%*(0,1)), 0 < o < 1,
respectively.

(2) The laws of uy, Uy converge weakly in L*(0, T; L*(0)), and the laws of vn, VN converge
weakly in L*(0, T; L*(0, L)) to the same probability measures as the weak limit of the laws
of uy; and vi,, respectively.

(3) The laws of structure variables ny, 0y, and 7N converge weakly to the same probability
measure in L>(0, T; H*(0, L)) forany0 <s < 2.

The first statement follows from the Prohorov’s theorem and Lemma 4.2. Furthermore,
by combining these convergence results with Lemma 4.4 and elementary tools from prob-
ability (see e.g. Theorem 3.1 [24]) we can see that the laws of uy, Uy converge weakly in
L?(0, T; L?(0)), and the laws of vy, Vn converge weakly in L?(0, T; L*(0,L)) to the same
probability measures as the weak limit of the laws of u;\; and v;(], respectively, which is the
second statement of the corollary. The same argument implies that the laws of structure
variables converge weakly to the same probability measure in L?(0, T; H*(0, L)) for any 0 <
s< 2.

To recover the weak solution in the limit of these subsequences, we need to upgrade the
weak convergence results above to almost sure convergence. This is done next.
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4.2. Almost sure convergence

Let unx be the joint law of the random variable Uy =
(un, uy, v, Vi s 15 1 715 s Un, W) taking values in the phase space

T := L*(0, T;L*(0)) x (L*(0, T; L*(0)) N (L*(0, T; H'(0)), w))
x [L*(0, T; L*(0, L))]* x [L*(0, T; H*(0, L)) N (L*(0, T; H3 (0, L)), w)1?
x [C([0, T], H*(0, L)) ?
x (C([0, T1; /) N L*(0, T;L*(0) x L*(0,L))) x C([0, T];R),

for some fixed % <s<2.

First observe that, since C([0, T]; U) is separable and metrizable by a complete metric, the
sequence of Borel probability measures, MZ‘(}’ (-) :==P(W e .), that are constantly equal to one
element, is tight on C([0, T]; U).

Next, recalling Lemmas 4.2, 4.3, 4.6, 4.5, and Remark 4.7, and using Tychonoft’s theorem it
follows that the sequence of the joint probability measures .y of the approximating sequence
Uy is tight on the Polish space Y.

To state the next result, we will be using the notation “=d” to denote random variables that
are “equal in distribution” i.e., the random variables have the same laws as random variables
taking values on the same given phase space Y.

Theorem 4.8. There exists a probability space (S,F, ]I_i’)1 and random vari-
ables Z/_[N = (l_le ﬁ§> 1_/N) 17?\]) ﬁN’ ﬁ;]) f)ﬁ’ ’7\_7’;\]: ﬁN) MmN, kN) ﬁN’ WN) and Z/_{ =
@at, vy, 5,050, 0 T mk U, W) defined on this new probability space, such that

(1) Uy =% Uy.

(2) Wy = W forevery N € N.

(3) Uy — U P-almost surely in the topology of Y.

@u=ut, qj=qt=5 7*=7, v=VandU=(R+7)09).
(5) 9;p = v in the sense of distributions, almost surely.

Proof. The existence of the probability space and the existence of the new random variables, as
well as the first three statements of the theorem follow from an application of the combination
of Theorem A. 1 in [9] and the main result in [25].

The fourth statement then follows from part (1), Lemmas 4.4, 4.5 and an application of the
Borel-Cantelli lemma. Moreover, we have

(R4 7w € C(0, T /) P—as. (66)
We also define the rest of the approximations,
iy =uyody, uy=1tyody,
IN=10NoN, Ty =1NodN, TNy =Ny o PN,
YN = VN o ON.

Q2 = [0, 1)x[0, 1), F is the Borel algebra on 2 and Pis the Lebesgue measure on £ and thus (2, F, P) isindependent
of the approximate parameters N and &.
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Then, for some subsequence, we deduce that,
iy— 1, uy—ia P—as inL%0,T;L*0)),
= = ~+ = —% —% ® s T2 s 3
N1, iy — 1, iy —> 1 P—as inLl?0,T;H(0,L)), se€ (5,2)

W — ¥ P—as inL*0,T;L*(0,L)).

To prove the fourth statement, we begin with the fact that

T pL T rL
/ / dinpdzdt = / / vipdzdt, V¢ € Cy(0, T;L*(0,1)),
0 0 0 0

and thus integration by parts yields,

T rL T L
— / / N0 pdzdt = / / vipdzdt, V¢ e Cy(0, T;L*(0, L)).
0 0 0 0

Statement (1) then also implies that

T L T rL
— / / NN 0ipdzdt = / / Vpdzdt, Vo e Cy(0, T;L*(0, 1)),
0 0 0 0

and thus passing N — oo and using statement (3) we come to the desired conclusion. The
same argument along with Statement (3) also gives us that,

9n* =v*, almost surely.
O

Next we will construct a complete, right-continuous filtration (]:"t)tzo on the new prob-
ability space (5_2,]:", IF’) given in Theorem 4.8, to which the noise processes and all the
solutions (approximate and limiting) are adapted. This filtration will be used to define the
new stochastic basis that appears in the definition of martingale solutions given in Definition
1. With this in mind, we denote by F; the o-field generated by the random variables
u(s), (s), 71(s), {un (s), ¥n (s), In(s) : N € N}, W(s) for all s < t. Then we define

Ni={AeF|PA) =0}, F=ocFUN), F=[|F (67)

s>t

We note here that (66) gives us stochastic processes (R + #7™)u and v that are
(F1)t=0—progressively measurable and thus helps in identifying the limit of the stochastic
integral as we pass to the limit as N — oo (see also Lemma 5.6 where we pass to the limit
as ¢ — 0). Moreover, observe that since (un, v, 7)n)|[0,s] is independent of W(t) — W(s)
forany 0 < s < t < T, it means that (@, v,7)]|[o, is independent of W(t) — W(s) for any
0 <s <t < T (seee.g Lemma 8.3 in [26]). Hence we conclude that W is an {f}}te[o,T]—
Wiener process.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 393

Next, relative_to the new stochastic basis (2, F, (]:-t)tzo) P, W), for each N, the following
equation holds P-a.s. for every ¢ € [0, T] and any Q € Z:

(. Q) = (Wo(R + 10), @) + (v0, ¥) — / / a0 + i 0,00)
1 t I t o - _
-3 vNUy - q+ vw(uy —un) - q
2 /o Jo 0 Jo
1 [t 7t it
-3 / / R+ 7¥) (@), — viire,) - VINT - q — (WY, — Vire,) - VINg-af)  (68)
0o JO
¢ =% =% 1 ¢ =% =%
—2v / / (R + i%)DN (%) - DN (q)dxds — — / / div'~vadivivg
0 JO &Jo Jo

t 1 1
+ / <Pin / qz — Pout / qz
0 0 z= 0 z=1

_ Observe also that the bounds obtained in Lemma 3.4 hold for the new random variables
Un as well. As a result, weak convergence results up to a subsequence (due to the bounds in
Lemma 3.4) give us the following:

t
)+ / (G, oy AW, Q).
0

e L* (L0, T; L2(0))) N LA( L2(0, T; V)),
v, v € L2 L0, T; L*(0, L)), (69)
i, 7" € L*(Q; L%°(0, T; HF (0, L)) N L*(Q; WH(0, T; L*(0, L))),

where u, ¥, V%, 7, and 7* are the limits defined in Theorem 4.8. We also have the following
upgraded convergence results for the displacements. Namely, notice that Theorem 4.8 state-

ment (2) implies that for given % < s < 2 (see [10] Lemma 3),

N — fand 7y — 7% in L%°(0, T; H*(0, L)) a.s. (70)
and thus the following uniform convergence result holds
iin — fand ii%, — 7 in L>°(0, T; C'[0, L]) a.s. (71)

Combining these regularity and convergence results, we can now pass to the limitas N —
o0 in the weak formulations of the approximate problems (68) stated on the fixed reference
domain O, defined on the probability space (Q, F,P), while keeping & > 0 fixed. We consider
the random variables Uy defined on the probability space (2, F,P) and pass to the limit
N — o0 in (68) and show that the limit satisfies the weak formulation (27) with divergence-
free penalty. Except for the divergence-free penalty term, this is the same weak formulation
as stated in the definition of martingale solutions Definition 1. More precisely, the following
theorem holds true.

Theorem 4.9. (Existence for the problem with penalized compressibility). For the stochastic
basis (Q, F, (F1)i=0,P, W) as found in Theorem 4.8, given any fixed £,8 > 0, the processes
(1, 77, 7*) obtained in Theorem 4.8 (see (69)) are such that i7* and (R + %)@, ,77) are (F)s=o-
progressively measurable with P-a.s. continuous paths in H*(0, L), % < s < 2and Y,
respectively, and such that the following weak formulation holds P-a.s. for every t € [0, T] and
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foreveryQ € Z:
(R+ 7" ()a),q) + @), ¥) = (o (R + 10), @ + (vo, ¥)

t L ~ ~ 1 t o
_ / / 0,70 + DoniiOt + / / 3% - q
0 Jo 2o Jo

t
- / / (R+77) (@ = Befjrey) - V7 - q = (@ — Befjrey) - V7 g @) )

—Zv//<R+ 9D (@) - D (q) + - //dzv”udw"
1
+/O (Pm/o (/ZZZZO_Pout/O qzz—l

)+ [ ...
= 0

The proof of the following result is similar to and slightly simpler than the proof of
Theorem 5.5 and thus we refer the reader to the proof of Theorem 5.5 for the details.

Before we proceed and consider, the limit as the divergence-free penalty parameter ¢ — 0,
we argue that

n*(@t) =n() foranyt <1, P—as. (73)

where

1
T =TAinf{t > 0: 1nf (R +1(t,2)) < dor|[R+n®)llmso,r) = 8}
Indeed, to show that this is true, let us introduce the following stopping times. For 3 3<s<2
we define

_ _ 1
v =T Ainf{t > 0: eiﬁ)fL](R + in(t,2)) < 8or ||[R+ iNn(D)llEso,r) = 5}'
z >

Then thanks to (70), T < liminfy_, s T a.s. Observe further that for almost any o € Q and
t < 7, and for any € > 0, there exists an N such that

17(t) — 7" O I,y < 171 — INE IEs,n) + 1N @) — I8 I E30,1)
+ 17" () — ayOllEso.1)
< €.

This is true because for any € > 0 there exists an N; € N such that the first and the last terms
on the right side of the above inequality are each bounded by § for any N > N thanks to
the uniform convergence (71). Furthermore, since t < 7y, for infinitely many N’s, the second
term is equal to 0 which follows from equivalence of laws (see e.g. Proposition 3.2.2 in [27] ).
Hence, we conclude that indeed

') =n() foranyt<rzt, P—as.

5. Passing to the limitase — 0

In this section, to emphasize the dependence on the parameter ¢ > 0, we will use the
notation (Ug, Vg, v}, e, 1, W) and (Q, F, (ft)t>0, PP) to denote the solution and the filtered
probability space found in the previous section. In what follows, we will pass ¢ — 0 in (72)
with appropriate test functions. Most of the results in the first half of this section can be proven
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as in the previous section. Hence, we will only summarize the important theorems without
proof here.

First observe that, thanks to the weak lower-semicontinuity of norm, the uniform estimates
obtained in the previous section still hold. That is, as a consequence of Lemmas 3.4 and
Theorem 4.8, we have the following uniform boundedness result.

Lemma 5.1. (Uniform boundedness). For a fixed § > 0 we have for some C > 0 independent
of ¢ that

Fis 2
(D) Bl oo o 112 0pnrzrsvy < €

2) E|v1 1
L (0,T;L2(0,L))NL2(0,T;H 2 (0,L))
< C.

< C.

o (12
(3) ]E”Vs ||LOO(O’T;L2(0’L))

C.
C.

s 112
4 ]EHHSHLOO(O,T;HS(O,L)HWLOO(O,T;LZ(O,L))) <

%2
() Bl o (O,TSHZ (0,L) N W0 (0, TLL2(0,1))
(6) Elldiv™ e | 12 o 1120y < Ce-
Recall that the bounds obtained in the proofs of Lemmas 4.2 and 4.3 were independent of

¢. Hence, the same results still hold true and we obtain the following lemma.

Lemma 5.2. (Tightness of the laws).

(1) The laws of @, are tight in L*(0, T; HY (0)) N (L*(0, T; HY(O)), w) forany y < 1.

(2) The laws of ve = 0:1, and that of Vi = 9,11} are tight in L*(0, T; HY (0, L)) forany y < 1
and in (L*(0, T; L*(0, L)), w) respectively.

(3) The laws of e and that of i} are tight in C([0, T1; H*(0, L)) for % <s<?2.

Now for an infinite denumerable set of indices A, we let . be the law of the random
variable U, := (ug, 1¢, 71}, W) taking values in the phase space

S := 12(0, T; Hi (0)) N (L2(0, T; H'(O)), w)
x [C([0, T], H (0, L)) N H' (0, T; L>(0, L))]
x [C([0, T1, H*(0, L)) N (H' (0, T;L*(0, L)), w) N (L*(0, T; Hy(T")), w)] x C([0, TI; R),

for % <s<2.

Then tightness of 1, on S and an application of the Prohorov theorem and the Skorohod
representation theorem, which is a combination of Theorem A.1 in [9] and [25], give us the
following almost sure representation and convergence.

Theorem 5.3. (Almost sure convergence in €). There exists a probability space (Q, F,P) and
random variables Uy = (0g, Ne, N3, We) and U := (@, 1, n*, W) such that

(1) L:{\g =4 Z//{:sforeverye € A.
(2) lng = Wfor every e € A.
(3) Uy — U P-a.s. in the topology of S as e — 0.
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Observe also that, since O is a Lipschitz domain the embedding H” (O) — L1(0O) is
continuous for any g € [1, ﬁ] and y < 1, and thus statement (2) implies that

4, —> 0 inL*0, T;L*0)), P-—as. (74)
We let
i\/é‘ = 8tﬁ8’ i\/: = 8tﬁ:

Next, we discuss additional regularity and convergence properties for the random variables
discussed in Theorem 5.3, which we will use to pass to the limit as ¢ — 0.
First, we notice that equivalence of laws implies that for some C > 0 independent of ¢,

I_EIIﬁs||%00(0,T;L2(O))QL2(O’T =&
Ell%e 7 orz0n) <G Bl i~qnron < C
fEHﬁe”iOO(O,T;Hg(O,L))ﬁWI,OO(O,T;L2(O,L)) <G ]E||ﬁ:||iw(0,T o nwironzon < ¢
Bl divT e 172 0,712y < Ce-

(75)

Furthermore, for the limiting functions we have
e L* (L0, T;L*(0))) N LA L*(0, T; V),
b, 9 € L2 (Q;L°°(0, T; L*(0, L)), (76)
7,0 € L*($; L(0, T; H3 (0, L)) N L*(Q; WH°(0, T; L*(0, L))).
Now;, notice that (75)4 implies that, up to a subsequence, we have
divied, — 0 inL*(0, T;L%(0)), P —a.s. (77)
Furthermore, as shown in the previous section, we also have that

e — fHand §* — 7% in L°°(0, T; H*(0,L)) and L®(0, T; C*([0,L])) P —as.  (78)

and, for given % < s < 2 we have that
R 1 -
inf  (R+7"(t,z)) =8 and R+ 7%~ rm0L) < 7 P—as. (79)
te[0,T],z€[0,L] s

Finally, we note that (g, V¢, ¥}, ¢, 17, W) solve P—a.s. the following weak formulation:

(R + 1z ()8 (1), @) + (e (1), ¥) = (uo(R + 10), @) + (vo, ¥)

t L R R 1 t s

— / / 0,00z + 0221022 + _/ / atn:us °q
0o Jo 2Jo Jo
1 [t s A R B R R RN

- _/ / (R+ n:)((ua — Ogn)srey) - Vet - q— (Ug — Osnerey) - V"*‘q - Ug) (80)

/ / (R+17 )an (i) - D (qQ + - / / div's @, d1v'78q
+/ ( m/ qz _Pout/ qz ) /(G(us;vw )dW)Q)a

0 0 z=0 z=1

for every t € [0, T] and for every Q = (q, ¥) € Z.
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Before we can pass to the limit as ¢ — 0 in (80), we have one more obstacle to deal with.
Namely, observe that the candidate solution for fluid and structure velocities, U= (0,9, is
not regular enough to be a stochastic process in the classical sense as it only belongs to the
space L2(0, T; L2(0)) x L*(0, T;L?(0,L)) (note that the equivalent of Lemma 4.6 does not
apply). Hence, we need to be careful in our construction of an appropriate filtration. For this
purpose, we construct an appropriate filtration as done in [28]. Define the o —fields (history
of random variables)

o1 (0) == ("o U o<gun],

=t \QeCy((0:5):2)

where N = {A € F [P(A) =0}.
Let F; be the o — field generated by the random variables 7(s), {:(s) : € € A}, W(s) for
all 0 < s < t. Then we define

F=oFUN),  F=o(@) Vo) :e e ADUFD),  (81)

s>t

This gives a complete, right-continuous filtration (F1)1=0, on the probability space (2, F, P),
to which the noise processes, approximate and the candidate solutions are adapted. Moreover,
foranyt > s, G(W(t) — W(s)) is independent of .7% and we can show that W is an (ﬁt)tzo-
Wiener process. This is the major reason behind employing the non-classical representation
theorem in [9]. Now we state the following result from [28].

Lemma 5.4. There exists a stochastic process in L2(0, T; L2(0)) x L*(0, T; L?(0, L)) a.s. which
is a (Fy)¢=o-progressively measurable representative of U = (W, V).

Remark 2. Observe that thanks to Lemma 5.4 and continuity of the coeflicient
G, we can deduce that G(ua(s),v(s),n*(s)) is {ﬁt}tzo—progressively measurable.
This measurability property along with the growth assumptions (20) implies that
fot (G(U(s), (s), 1*(s))dW(s), Q(s)) is a well-defined stochastic integral for any (ﬁt)tZO'
adapted continuous Z-valued process Q (see e.g. [29] or Lemma 2.4.2 in [30]), where Z is
defined in (18).

We are now ready to state the main result of this section, which shows that the limiting
stochastic processes (fig, 7}, W) for each fixed § > 0, converge to a martingale solution of our
stochastic FSI problem, as ¢ — 0.

The following theorem is a key intermediate step in establishing the final existence result
as it shows that the processes (, 7, 7*), obtained in Theorem 5.3, solve the weak formulation
(23) for almost every time ¢ € [0, T, except with 7 replaced by the artificial structure random
variable 77* in the appropriate terms. This implies that we obtain the desired martingale
solution in the sense of Definition 1 for as long as 7 and 7™ are equal.

Theorem 5.5. (Main convergence result ase — 0). For any fixed § > 0, the stochastic processes
(@, 1, n*) constructed in Theorem 5.3 satisfy
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(R+ ¥ ()0, 1)) + B (0, ¥ (1) = (o(R + 10), q(0)) + (vo, 1/ (0))
//(R+ﬁ*)u atq+// b o + //amu q
/ / 0.0 + it — 20 / / R+ 7D @ D7 (q) )
——/ /(R+ (@ — dnre,) - Vi q— (. — onjrey) - v q-0)

1
+/ <Pm/ qZ d”_Pout/ qZ
0

P-a.s. for almost every t € [0,T] and for any (ft)t>0 adapted process Q = (q, ) with
continuous paths in 9 such that div’” q = 0.

dr> ds + (G(u,v, “YAW, Q),

Proof of Theorem 5.5. Passing to the limit as ¢ — 0 in (80) will be done in the following four
steps. In step 1, we will construct appropriate test functions Q, for the weak formulation (80).
In step 2, we discuss the limit ¢ — 0 of the stochastic integral. In step 3, we show that the
limit u satisfies the transformed incompressibily condition. In step 4, we pass to the limit in
the remaining terms, of which the nonlinear advection term is the only one which requires
discussion. We present these steps next.

Step 1. To pass to the limit in (80), we will consider test functions (qe, ¥¢) taking values in
9, where 9 is defined in (18), such that div’* qs = 0 so that the penalty term drops out. At
the same time we want (82) to hold for every 2 —valued process (q, 1) such that div? q = 0.
This dependence of test functions on 7* leads us to construct test functions, specific to our
problem, on the maximal rectangular domain Oj consisting of all the fluid domains associated
with the structure displacements 7.

We begin by constructing an appropriate test function for the limiting Equation (82) as
follows: Consider a smooth, essentially bounded, (ﬁt)tzo—adapted process r = (r1,72) on
(’_);7* such that V - r = 0 and such that r satisfies the required boundary conditions r, =
Oonz=0,L,r =0and 3,71 = 0 on I'}. Assume also that on the top lateral boundary of the
moving domain associated with 7%, the function r satisfies r(t,z, R + 71*(t,2)) = ¥ (¢, 2)e,.
Next, we define

q(t,z,r,w) = r(t,w) o A%"* H(z,1).

Now, we will show that (q, ¥) is an appropriate test function as it appears in the statement of
Theorem 5.5.

For that purpose, for any ¢ € [0, T] and given process r as mentioned above, let Cy : € x
C([0,L]) — C}(O) be defined as

Cr(w’ 77) = Fr] (I‘(t, a))),

where F, (f)(z,r) := f(z, (R 4+ n(2z))r) is a well-defined map from C(@n) to C(O) for any
n € C([0,L]). Thanks to the continuity of the composition operator F, and the assumption
that r(¢) is ﬁt—measurable, we obtain that, for any n, the Cl(O)-valued map o — Cr(w,n) is
J’:}—measurable (where C!(O) is endowed with Borel o -algebra). Note also that for any fixed
o, the map n — Cr(w, ) is continuous. Hence we deduce that C, is a Carathéodory function.
Now by the construction of the filtration (ﬁt)tzo in (67) we know that n* is (ﬁt)tzo—adapted.
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Therefore, we conclude that the C!(O)-valued process q, which by definition is q(t,w) =
Cr(w, n*(t, w)), is (]:"t)tzo—adapted as well. The same conclusions follow for the process v,
using the same argument.

Now we will begin our construction of the approximate test functions Q, to be used in
(80) to pass to the limit ¢ — 0. These test functions Q. need to satisfy the divergence-
free condition on the domains associated with the approximate functions 7} along with the
right boundary conditions. Furthermore, they need to converge to the test function Q in
an appropriate sense. As mentioned in the introduction, we need to be careful as these test
functions Q, are also required to satisfy appropriate measurability properties (see Lemma
5.6). Hence, as done earlier in the proof of Lemma 4.2, we construct these test functions by
extending and then "squeezing” the function r while also ensuring that its desired properties
are preserved.

Hence, define Coxt(w,n) = E,(r(t,w)) where E, is the operator that extends in the
vertical direction e,, the boundary data of functions defined on O, to Os. Let °(t,0) =
Cext(w, n*(t, w)), that is,

(’,0 TO) _ I'O L r(ta 2,1, a)), ifr <R+ ﬁ*(t, 2z, a)),
o ' 0,V (t,z,w)), elsewhere in Oj.

Adaptedness of 1 then follows using an argument identical to the one above by realizing that
Cext is a Carathéodory function. Notice also that since div(0, ¥ (¢,z)) = 0 we have that div
r® = 0 as well. For properties of r°, see e.g. Section 11.3 in [31] and [21].

Now we will scale I = (r2,7%) to construct its suitable e-approximations while also
preserving its desired properties. Define for any w € 2, the random variable

R+7*
Be(w) = max { sup —rz*, 1}
(t2)el0,T1x[0,L] R+ 1
Since [Be — 1| < SUP(; ,)ci0,11x[0.L] “;ur—_,;’fl < HIA* — A% ll12(0,1)x (0,L)> thanks to the uniform

convergence (78), we know that 8, — 1 almost surely.
Using this definition we set,

(Be@)r2(t,2, Be(@)r, ), 1262, Be(@)r, ), if 7 < 5b,

_ (83)
0, ¥ (t,z, ), elsewhere in O;.

Pt z,r,0) = :

Notice that by scaling r° in this fashion we still have that V - ) = 0 for every w € Q. It is easy
to see that r(¢, z, R + 7} (t, z, ), w) = (0, ¥ (t, 2, )).
We will next use r? to build the test function g for the fluid equations on the fixed domain

O:
Qe (t,2,1,0) = r)(L)|o,y 0 AL (D(2,1). (84)

Since both 77* and 7/} are (.7:});6[0;] -adapted, the adaptedness of the process q, to the filtration
(Fp) te(0,1] follows from the adaptedness of r? and by using the same arguments as above. This
is the reason behind using the non-classical representation theorem in Theorem 5.3. Addi-
tionally, since every realization of r¥ is divergence-free in Oj:, we have that div Vg, (t) = 0.
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Admissibility of the boundary values q¢|so can be verified easily. Hence, the Z-valued
process Q; = (qs, ¥) will serve as our random test function for the ¢-approximation.

Now we study the convergence of Q. as ¢ — 0. Observe that, for any w € Q, using the
mean value theorem we can write

19:(t,2,7) — q(t, 2 1)| = [¥2(t, 2, R+ 75 (1 2)r) — (L, 2, (R + 7*(t,2))7)]
< 18,22t z, p)r|If (8, 2) — ¥ (L, 2) (85)
+ |r (t,z, R+ 0*(t, 2)r) — r (t z, R+ 0*(t, 2))r)|.

To simplify notation, in the following calculation, we will denote 7 = (R + 5* (¢, 2))r, for any
r € [0,1]. We obtain

e (8,2, (R+ 7% (1,2)r) — (8,2, (R + 71" (8, 2))7)]|

= (1(Ber2(t2. B, 1) (1,2, B7) = (2627, 12 (2 PD) Ly + I (B2 DI oy

< (2, 87 — (1, 2P| + (B — D2 (1,2, ﬁﬁmon) {,Sé} +1e(, z,N)Ill{ﬁ%«Sl}

< [10x°(t, 2 o) R+ 7*(6,2))7] + (12 (8 2, BeT), 0)[1(B: — D1,
+ Iro(t,zfr)l]l{ﬁ%«ﬂ}.

1
7}

Thus using (78), we pass ¢ — 0 in (85) to obtain that
g —> q in L0, T; L7(0)) P—as., for any p < oo. (86)

Now, since by definition Ve qe = Vrg, we can carry out similar calculations for the
transformed gradient to obtain

Vg, — Vi'q inLl®0,T;1/(0)) P—as, for any p < 00. (87)
Recalling that Vq, = (V¢ qe)(VAZ,) and that VA?, — VAZ, in L(0, T; C(O)) for almost
every w € Q, we summarize our convergence results for the test functions below:

g — q inL>(0, T; W (0)) P—as., for any p < oo. (88)

Observe also that 9,q. = 91 o Az + Vi qe - ;7 re,. Since we know that 9% — 7* in
L>®(0, T; L?(0, L)) a.s., we further infer

0tqe — 0yq weaklyin L*(0, T;LY(©)) for any q < 2, P—as. (89)

As mentioned earlier the results in Theorem 5.3 and (74) will be used in passing to the
limit as ¢ — 0 in the weak formulation (80) in conjunction with the convergence of the test
functions given below in (88)-(89).

Namely, we consider (80) and use Q; = (qe, ¥) as the test functions. This requires a special
version of the Itd product rule which can be proven by using a regularization argument as
outlined in Lemma 5.1 in [32]. We obtain that

(R + 1l (1))8: (1), ge (1) + (e (1), ¥ (1)) = (o (R + 10), g (0)) + (vo, ¥/ (0))

/ / R+ Ug)usat(k / / Vsatw + = / / Vi ua

- / / (07160, + Dzzfe zy) — 20 / /O (R + 7%)D" (&) - D' (qe)
0 0 0



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 401

1 [t e o L
B E/ /O(R + n:)((ug N Vsrer) -V Ue - Qe — (ua - vgrer) VAL ge - lla)
0

t 1
+/ (Pin/ (qg)z
0 0

holds P—a.s. for every t € [0, T].

Now we begin passing & — 0 in (90).

Step 2. We start with the stochastic integral. Recall Remark 2 and the fact that, by
construction, Q is (ﬁt)tzo-adapted.

1
dr — Pout/ (qg)z
0 0

t
1d7’> dS + / (G(ﬁsa fls> ﬁ:)dW> Qé‘)) (90)
= 0

z=

Lemma 5.6. The sequence of processes <f0t(G(ﬁ8 (5), Ve (s), 0¥ (s)dW(s), Q; (5)))t - con-
elo,

verges to (G(a(s), ¥(s), 7*()dW(s), Q(s)) in LY(Q; L1(0, T;R)) as e — 0.
o ot . 1 1

te[0,T]

Proof. First, by using (20),,3 we observe that

T
/ ” (G(ﬁs) 175, ﬁ:)) Qé‘) - (G(ﬁ; f/’ ﬁ*)) Q) |I%2(UO,R)dS
0

T T
< / (G, %2, 32) — G, B, ), QIZ, 0y + / I1(G@, 5,75, Q — QI o)
0 0

T
+/ (G, %, 7%) — G, 3, 7), QL wom)
0
T 2 2 2 2
=< / (”n:”LOO(Q,L)”us - u||L2(O) + [[ve — V”LZ(O’L)) 1Qell12
0
! 2 2 2 2
+/ (Hn:HLOO(O,L)HuHLZ(O) + ”v”LZ(O,L)) “QE - Q”LZ
0

T
+ / 175 = 7 1o 181120, 1QUI1E
0
=< C((S)(“QE||]%w(0,T;L2)(||ﬁ£ - ﬁ“%Z(O,T;LZ(O)) + ||1A’a - f/”%Z(O,T;LZ(O,L)))
2 A2 ~12

+ ”Qs - Q||L°°(0,T;L2) (”u”LZ(O,T;LZ(O)) + ”V”LZ(O,T;LZ(O,L)))

Ak oAk ~ 12 2
o 17 = 0¥l <0 18122 712000 | QU 0 2 )

Thanks to Theorem 5.3, the right hand side of the inequality above converges to 0, P—a.s. as
& — 0. Hence, we have proven that

(G(lie, Ve, 1), Qe) — (G, %,7%),Q),  P—as inL*0, T; Lr(Up, R)). (91)

Now using classical ideas from [33] (see also Lemma 2.1 of [34] for a proof), the convergence
(91) implies that

t t
/0 (Gl s AYAW, Qu) — /0 (G(& 7, 7%)dW, Q) (92)

in probability in L%(0, T; R).
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Furthermore, observe that for some C > 0 independent of ¢ we have the following bounds
which follow from the It6 isometry:

T gt . T ot o
E/|/Yam%ﬁbwwmmww=/‘E/Mamwthm@%m¢m
0 0 0 0

T
<TE (/ (”ﬁ:”%w(o,m||ﬁs||i2(o) + ||‘A’s||i2(0,L)) ds)
0
(93)
< C(9).

Combining (92), (93), and using the Vitali convergence theorem, we thus conclude the proof
of Lemma 5.6. O

Step 3. We now show that the limit @ solves the transformed incompressibily condition.
To do that, observe that (75)4 implies that for any measurable set A C  x [0, T] we
have E fOT XA (divﬁ: ﬁg,(p) — 0 forany ¢ € L2(O). Observe also that, thanks to (78)

00"
R+7*

9.7z
R+1E

and (79), we can infer that — uniformly on [0, T] x O a.s. and also that

E| I?j_—'% ||I£OO O.TL%(O)) < C for any p > 2. An application of the Vitali convergence theorem
thus gives us that
3215 91"
A % A
R+ny R+n*

in L>($; L°(0, T; L (0))).

Combining this with the weak convergence (up to a subsequence) result that we obtain as
a consequence of (75)4, we deduce that E fOT XA (divﬁ*ﬁ, (p) = 0 forany ¢ € L*(0) and

measurable set A. Thus divl” ©i(f) = 0 for almost every ¢ € [0, T] almost surely.
Step 4. We now pass to the limit ¢ — 0 in the remaining terms. For the first term we write,

t t
[ woa—ivar <1 [ G- v
0 JO 0 JO
t
+ |/ / u(9qe — 3;q)| —> 0 a.s.in L>(0, T).
0 JO

The first term on the right side converges to 0 in L°°(0,T) almost surely thanks to
(74), whereas the second term converges to 0 thanks to the weak convergence (89) in

L*(0, T; L3 (0)). We now focus on a part of the nonlinear advection term on the right side of
(90) and leave the rest of the proof of convergence to the reader, which is carried out in the
same way using the results Theorem 5.3, (74), (77), (78), and (88), (89).

Observe that by integrating by parts we can write

t Ak A n Ak n
/ /O(R + ﬁ:)((ﬁs -Ve)a, - qe — (ag - Vns)qs - Ug)
0

t , )
=_2/ / (R+ﬁ:)(ﬁe'vn8)qs'ue
0 JO

t . t pL
- / / (R+ ﬁ:)di\’ng U, U, - qe + / / (‘A’s)zwdz-
0 JO 0 JO
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It is easy to see that the last term on the right hand side converges to fo fo Prdzin L°° (0 T)

a.s. Now, for the other terms, writing i, = (ug, uz) (likewise ) and V7 = (81778, 3 ), we
observe that,

t , R t e
|/ /(R‘i‘ﬁ:)(ﬁe'vns)qs‘us_/o /O(R+77 Y@ - V" )q - u|

L. ok t A
|/ /(R+ 5> Gl — W)a?%fﬁ/() /Om:—ﬁ*xﬁ-v" q- @

ij=1
//<R+ (@ (Vieqe — VT q)) - ).

The first two terms on the right side converge to 0 almost surely thanks to Theorem 5.3 and
(88). Similarly for the third term, we use (88) and obtain that

t
| /() /O(R + ﬁ:)(ﬁ : (V’?s qe — v q)) : ﬁl = CHﬁ“%Z(O,T;LAL(O))HVng Qs — v q||L°°(O;T;L2(O))
— 0, P—as.

Almost sure convergence of the third integral to 0 in L°°(0, T) is immediate. Finally, thanks
to (74) and Lemma 5.1, we have

T
sup |/ / (R+17 )div%ﬁsﬁe “Qe] < / / [(R+ f]:)divngﬁsﬁs “ Qe
te[0,T] 0 O
< C(®Idiv7 tg [ 120, 1502 (0y) e [l 20,7514 (0) 19e | Lo 0,751 ()
— 0, P—as.

This completes the proof of Theorem 5.5.
O

Notice that in the statement of Theorem 5.5 we still have the function 7*(t) in the weak
formulation, which keeps the displacement uniformly bounded. We now show that in fact
n*(t) can be replaced by the limiting stochastic process 7(t) to obtain the desired weak
formulation and martingale solution until some stopping time 7, which we show is strictly
greater than zero almost surely.

Lemma 5.7. (Stopping time). Let the deterministic initial data ng satisfy the assumptions (22).

Then, for any 8 > 0 and for a given % < s < 2, there exists an almost surely positive

(]:'t)tzo—stopping time t, given by
T:=TAinf{t > 0: zeif(l)fL](R +17(t,2)) <8} Ainf{t > 0: |[R+ n(®)|lgso,r) = %}, (94)
such that
nr@) =n) fort <. (95)

Proof. In Step 1 below we first show that the stopping time (94) is strictly positive a.s., and
then is Step 2 we show that 7*(¢t) = 5(¢t) fort < t.
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Step 1. We start by showing that under the assumptions (22) on the deterministic initial
data 19, the stopping time 7 is almost surely strictly positive for any § > 0. For this purpose
let us write the stopping time as

t=TArtWH 4@

where () and 7 are defined by:

1
W =inf{t > 0: iﬁ)fL](R +7t2) <8 @ =inf{t > 0: |R+H()llgsor) = 5}'
z€|0,

We start with 7). Observe that using the triangle inequality, for any 8y > 8, we obtain

— 1 _ 1
Blr® = 0, IR+ mollrpor) < +1 = lim B[r® < ¢, IR+ nollpor) < =1
80 e—0 80

. - R 1 1
<limsupP[ sup R+ 7(H)llmso,r) > I IR+ nollm2(0,r) < 8_]
e—0t te[0,¢) 0

1
< limsupP[ sup [|7() — nollmso,) > 3 —]
e—0t te[0,€)

1 . = .
< 4+ limsupE[ sup [[7(*) — nollms(o,)]
(3 3% e—0 te[0,€)

1 . _ R 1-5 R s
1 1. lim Sup]E[ sup ||77(t) - 770||L2((2),L)||77(t) - 770”12{2(0,”]
(G—35) €0 teloe

1 s
= limsup L sup €lP(0) 11150, 130 — noll o]
(3 5 €—>0 te[0,e)

IA

5 ;
€ = A~
= lim Sup —4/——— ]E[ sup ”V(t)”LZ(O L)] E[ sup ||77(t) - 770||i12(0)L)]
€—0 (5 - g) tel0,¢) te(0,¢)
=0.

Hence, by continuity from below, we deduce that for any § > 0,

_ 1

Plr® =0, IR+ nollp2or) < 51=0 (96)

To estimate 1) we observe that, similarly, since for any t € [0, T] we have that
inf e,y (R + 7(t)) > inf,eo,r) (R + 1n0) — 17(t) — nollz>(0,1), we write for any ¢ > &
Pz = o, inf (R +10) > 8]
< lim sup IP’[ 1nf inf R+7(t)) < 6, 1nf (R + 19) > &o]
e—0t t€[0,e) ze(0,L)

< limsupP[ sup [|7(t) — nollzeeo,) > 8o — 8]
e—0t te[0,e)

1 —
< —— limsupE[ sup [|7(t) —
(80 - 8)2 e—0 tel0,€)

=0.

770||?{1(0,L)]

Hence for given § > 0,

Pz =0, inf (R+1no) > 8] = 0. (97)
ze(0,L)
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That is we have
Bl =0, inf (R4 10) > & [R+ 0] =0 (98)
T=0U, 1n > o, < —| = 0U.
20 1o NollH2(0,L) s

Notice that the probability space constructed in Theorem 5.3 does not depend on § > 0.
Hence these solutions can be extended in order to prove the existence of a maximal solution
that exists until the time the walls of the tube collapse.
Step 2. The statement 7*(t) = 7(¢) if t < 7, can be obtained the same way as in (73).
O

Thus, by combining Theorem 5.5, Lemma 5.7, and (95), we obtain the main result of this
work.

Theorem 5.8. (Main result). For any given § > 0, if the deterministic initial data ng satisfies
(22), then the stochastic processes (0, 1], T) obtained in the limit specified in Theorem 5.3, along
with the stochastic basis constructed in Theorem 5.3, determine a martingale solution in the
sense of Definition 1 of the stochastic FSI problem (1)-(8), with the stochastic forcing given by

(10).
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