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SUNČICA ČANIĆ1 AND BORIS MUHA2 AND KRUTIKA TAWRI1

Abstract. In this paper we investigate a nonlinear fluid-structure interaction (FSI) prob-
lem involving the Navier-Stokes equations, which describe the flow of an incompressible,
viscous fluid in a 3D domain interacting with a thin viscoelastic lateral wall. The wall’s
elastodynamics is modeled by a two-dimensional plate equation with fractional damping, ac-
counting for displacement in all three directions. The system is nonlinearly coupled through
kinematic and dynamic conditions imposed at the time-varying fluid-structure interface,
whose location is not known a priori.

We establish three key results, particularly significant for FSI problems that account for
vector displacements of thin structures. Specifically, we first establish a hidden spatial reg-
ularity for the structure displacement, which forms the basis for proving that self-contact of
the structure will not occur within a finite time interval. Secondly, we demonstrate tempo-
ral regularity for both the structure and fluid velocities, which enables a new compactness
result for three-dimensional structural displacements. Finally, building on these regularity
results, we prove the existence of a local-in-time weak solution to the FSI problem. This is
done through a constructive proof using time discretization via the Lie operator splitting
method.

These results are significant because they address the well-known issues associated with
the analysis of nonlinearly coupled FSI problems capturing vector displacements of elas-
tic/viscoelastic structures in 3D, such as spatial and temporal regularity of weak solutions
and their well-posedness.

1. Introduction

We study a fluid-structure interaction (FSI) problem involving an incompressible, viscous
fluid flowing within a three-dimensional domain, bounded by thin compliant lateral walls.
The fluid dynamics is governed by the three-dimensional Navier-Stokes equations, while the
structural dynamics is modeled by a linear viscoelastic plate equation incorporating fractional
damping.

The interaction between the fluid and the structure is characterized by a fully coupled
system, with kinematic and dynamic coupling conditions that enforce the continuity of ve-
locities and contact forces at the dynamic fluid-structure interface. This coupling introduces
a significant geometric nonlinearity to the problem, as the fluid domain’s location is not
known a priori and is instead one of the unknowns in the problem.

The field of fluid-structure interaction (FSI) analysis has seen tremendous progress over
the past two decades (see, e.g., [2, 16, 3] and references therein). In this paper, we focus
on the interaction between fluid flow and a plate structure, so our brief literature review
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emphasizes the analysis of moving boundary FSI problems where the structural dynamics is
described by lower-dimensional models.

Most existing works involving lower-dimensional models interacting with viscous incom-
pressible fluids consider the case of scalar displacement, where the structure deforms only in a
fixed direction typically normal to the reference configuration. The theory of weak solutions
in this context is well developed, see [4, 11, 22, 33, 27, 19] and references therein. Strong
solutions have also been studied in this context, as can be found in e.g. [18, 12, 13, 20] and
refences within.

The case of three-dimensional (3D) structural displacement, where the structure can de-
form in all three spatial directions (vector displacement), is less well-studied, with only a few
works addressing weak solutions. In [34], the authors investigated an FSI problem involving
a 3D fluid flow interacting with a two-dimensional (2D) cylindrical shell supported by a
mesh of elastic rods. They proved the existence of a weak solution under additional assump-
tions that ensured the structure’s displacement remained Lipschitz continuous in space at all
times. In the 2D fluid and 1D structure scenario, several results have been obtained. The
local-in-time existence of weak solutions to FSI problems where 2D Navier-Stokes equations
are coupled with 1D plate or shell equations via the Navier slip boundary condition is estab-
lished in [24]. More recently, [17] considered an FSI problem where the structure is described
by a nonlinear beam equation with a term that penalizes compression, preventing domain de-
generacy. Additionally, recent work [14] has established the existence of local-in-time strong
solutions for an FSI problem where the structure is modeled as a linear plate.

To the best of our knowledge, the present work is the first to establish the existence of weak
(finite energy) solutions for a moving boundary FSI problem where a 3D fluid is coupled
with a 2D plate with 3D vector displacement.

The primary challenge in developing a theory for FSI problems involving structure equa-
tions accounting for 3D vector displacements is managing the difficulties associated with
self-contact. Specifically, proving existence results requires ruling out fluid domain degener-
acy, i.e., preventing self-contact of the structure over the time interval where the solution is
defined. In particular, in the case of 3D displacement, the standard energy estimates do not
provide sufficient regularity of the structure to analyze issues with self-contact.

Another challenge in developing a theory for FSI problems with vector displacements and
with the geometrically nonlinear coupling is designing suitable compactness arguments for
the fluid and structure velocities whose energy-based regularity estimates are insufficient to
deduce compactness.

In this manuscript we address both of those challenges by proving two “hidden” regu-
larity results for weak solutions of such problems. The first regularity result improves the
spatial regularity of structure displacement over the “basic” regularity provided by the en-
ergy estimate, and the second regularity result improves the temporal regularity of fluid and
structure velocities over that provided by the energy estimates. The first is used in ensuring
non-degeneracy of the fluid domain, while the second is used in establishing compactness
arguments for the fluid and structure velocities in this class of nonlinear moving boundary
problems. Finally, building on these regularity results we prove the existence of a weak
solution to a FSI involving 3D Navier-Stokes equations coupled to the 2D plate equation
with fractional damping accounting for 3D vector displacements. Thus, the main results of
this paper are three-pronged: (1) We provide a hidden regularity result for 2D plates with
fractional damping allowing 3D vectoral displacements, (2) We provide a hidden temporal
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regularity result for fluid and structure velocities in a nonlinearly coupled 3D fluid-2D plate
FSI problem with fractional damping and 3D vector displacements, and (3) We prove a
well-posedness result for weak solutions of the nonlinearly coupled 3D fluid-2D plate FSI
problem with fractional damping and 3D vector displacements.

More precisely, in terms of spatial regularity of structure displacement, in Section 3.1
we prove that the structure displacement belongs to the space L∞

t H2+δ
x for a sufficiently

small δ > 0, which is crucial for establishing that the structure displacement is Lipschitz
continuous in space at any given time, ensuring injectivity of the maps that map the reference
configuration of the fluid domain onto the “current” location of the moving domain. This
is generally one of the key issues in the analysis of nonlinearly-coupled moving boundary
problems with 3D (vector) structure displacements. The main ideas behind the proof
of this hidden spatial regularity result rely on constructing appropriate test functions for
the structure variable and their solenoidal extensions to the fluid domain, which satisfy the
kinematic coupling condition. A key step is to formulate a suitable non-homogeneous time-
dependent Stokes problem whose solution is used to construct the desirable test functions.
This approach generalizes the approach presented in [21] to vector displacements. The
technique developed here can be applied to other settings, including nonlinear structure
operators that are coercive in H2, and different boundary conditions, including the time-
dependent inlet/outlet boundary data.

In terms of temporal hidden regularity result for the fluid and structure velocities, in Sec-
tion 3.2 we prove that the fractional time derivative of order 1/8 of the fluid and structure
velocities can be uniformly bounded in L2

tL
2
x, i.e., we obtain uniform bounds for the fluid

and structure velocities in Nα,2
t L2

x, where N
α,p is Nikolski space. The key idea is to construct

appropriate test functions for the coupled FSI problem by utilizing a time-regularized (av-
eraged) modification of the structure and fluid velocities, similar to the approaches used in
[4, 11]. The construction of these time-regularized (averaged) test functions presents several
challenges, arising from the motion of the fluid domain, the non-zero longitudinal displace-
ment of the structure, and the mismatch in spatial regularity between the structure velocity
and its corresponding test function. Additionally, the test functions for the fluid and struc-
ture must satisfy the kinematic coupling condition at the moving boundary, with the fluid
test function also needing to satisfy the divergence-free condition within the moving fluid do-
main. To enforce these conditions, we construct a Bogovskii-type operator on a time-varying
domain with a Lipschitz boundary. The construction of the Bogovskii-type operator pre-
sented here holds significant potential for applications to analyzing general incompressible
flow problems on moving domains involving Lipschitz boundaries.

Finally, in Section 4, we present a constructive proof of the existence of a local-in-time weak
solution to a FSI problem between the 3D flow of an incompressible, viscous fluid modeled by
the Navier-Stokes equations and a 2D plate with fractional damping modeling elastodynamics
of a plate with 3D vector displacements. We employ a Lie operator splitting method, first
utilized in the context of FSI in [22] (and further developed in [23, 34] for different FSI
settings). The coupled problem is discretized in time and split into a structure subproblem
and a fluid subproblem along the dynamic coupling condition. This time discretization via
Lie operator splitting yields a sequence of approximate solutions, which is shown to converge,
up to a subsequence and in an appropriate sense, to the desired solution.

The structural regularity result from Section 3.1 is crucial in the construction of approxi-
mate solutions and the limiting solution, allowing us to obtain the desired solution up to a
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strictly positive time T determined by self-intersection of the fluid domain boundary. The
temporal regularity result obtained in Section 3.2 is crucial to achieve the compactness of
the sequence of approximations of the fluid and structure velocities. This ensures that a
subsequence of the approximate solutions converges strongly in the relevant topologies as
the time step approaches zero, which allowed us to pass to the limit in the approximate weak
formulations to prove that the limits satisfy the continuous weak formulation of the original
problem.

In this final step of taking the limit in the approximate weak formations, one needs to
deal with one last difficulty associated with general problems on moving domains – the fact
that the test functions in weak formulations depend on the fluid domain motion, and thus
on the time-discretization step, via structure displacements, in a nontrivial way (through
the divergence-free condition). This is a classical problem in FSI problems with nonlinear
coupling, see e.g., [22, 23, 25, 24]. Taking the limit in approximate weak formulations requires
constructing appropriate test functions which would converge, as the time-discretization step
converges to zero, to the test functions of the continuous problem in the norm strong enough
to pass to the limit. Indeed, in Section 4.4 we construct such test functions and take the
limit in approximate weak formulations to show that the approximate solutions constructed
here converge to a weak solution of the continuous problem.

2. Problem setup

We consider the flow a fluid in a periodic channel interacting with a complaint structure
that sits atop the fluid domain. See Figure 1. We assume that the structure displacement is
periodic, with the reference domain for the structure equations given by

Γ = {(x, y, z) ∈ R3 : (x, y) ∈ T2, z = 1},
where T2 is the 2D torus.

The fluid reference domain, is then given by

O = Γ× (0, 1).

We denote by Γr = ∂O \ Γ the rigid part of the boundary of the fluid reference domain O.

𝒪𝒪𝜂𝜂(𝑡𝑡)

Γ𝜂𝜂(𝑡𝑡)

x

z

y

Figure 1. The fluid domain

In this work we assume that the displacement of the compliant structure, denoted by η,
is a vector function with all three components of displacement satisfying a vector equation
for a plate with fractional damping, thereby allowing all three components of displacement
to be different from zero.
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The fluid domain deforms as a result of the interaction between the fluid and the structure.
The time-dependent fluid domain in 3D, whose displacement is not known a priori is then
given by

Oη(t) = Aη(t,O),

whereas its deformable interface is given by

Γη(t) = Aη(t,Γ),

where Aη is a family of C1 diffeomorphisms parametrized by time t ∈ [0, T ], such that

(1) Aη(t) = id+ η(t) on Γ, Aη(t)|Γ = id, det∇Aη(t, x, y, z) > 0.

We will now describe the fluid and the structure equations and the two-way coupling that
describe the interactions that take place between them.

The fluid subproblem: The fluid flow is modeled by the incompressible Navier-Stokes
equations in the 3D time-dependent domains Oη(t) ⊂ R3 :

(2)
∂tu+ (u · ∇)u = ∇ · σ

∇ · u = 0

}
in Oη(t)× (0, T ),

where u = (ux, uy, uz) is the fluid velocity. The Cauchy stress tensor is given by σ =
−pI + 2νD(u) where p is the fluid pressure, ν > 0 is the kinematic viscosity coefficient and
D(u) = 1

2
(∇u + (∇u)T ) is the symmetrized gradient of fluid velocity. Finally, on the rigid

part of the boundary we prescribe the no-slip boundary conditions:

u = 0 on Γr.

The structure subproblem: The elastodynamics problem is given by the linearly visco-
elastic plate equations describing the displacement of the structure in three spatial directions.
The plate is displaced from its reference domain Γ by η = (ηx, ηy, ηz), which satisfies the
following equation for some 0 < s ≤ 1, see e.g., [5, 31]:

∂2
t η +∆2η + γΛ2+2s∂tη = Fη in Γ, where Λ = (−∆)

1
2 .(3)

Here, Fη denotes the total force experienced by the structure. Assuming that the external
forcing on the structure is 0, this force Fη in the coupled problem results from the jump
in the normal stress (traction) across the structure. With the assumption that the external
force is zero, Fη comes entirelly from the fluid load felt by the structure (see (5)).

Since we work on the torus, the square root of negative Laplatian, denoted here by Λ,
along with its powers can be defined via Fourier transform.

The damped plate model given by equation (3) has been extensively studied in the liter-
ature, see e.g., [5, 31].

Remark 1. In the classical work [5], s = 0 is identified as a critical parameter for which
the semigroup, defined by the spatial differential operator, becomes analytic. In our work, we
use the dissipation term to derive a priori estimates, which necessitates that s > 0.

We stress here that while the fluid equations are posed on time-dependent domains, in
Eulerian framework, the structure equations are defined in Lagrangian coordinates on the
fixed reference domain Γ.

The non-linear fluid-structure coupling: The coupling between the structure and the
fluid takes place across the ”current” location of the fluid-structure interface. We consider
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a two-way coupling described by the so-called kinematic and dynamic coupling conditions
that describe continuity of velocity and continuity of normal stress at the fluid-structure
interface, respectively.

• The kinematic coupling condition which describes the continuity of velocities at the
interface is the no-slip boundary condition, which in the case of moving boundary,
reads:

∂tη(t) = (u ◦Aη(t))|Γ.(4)

• The dynamic coupling condition specifies the load Fη experienced by the structure:

Fη = −Sη(t) ((σn
η) ◦Aη(t)) |Γ,(5)

where nη is the unit outward normal to the boundary of Oη, and Sη = |cof∇Aηe3|
defines surface measure of Γη, i.e. dΓη = SηdΓ. This term arises from the transfor-
mation between Eulerian and Lagrangian coordinates.

2.1. Energy of the coupled problem. In this section we formally derive the following
energy inequality corresponding to the coupled fluid-structure interaction problem:

(6) ∥u∥L∞(0,T ;L2(Oη(·))) + ∥Du∥L2(0,T ;L2(Oη(·))) + ∥η∥L∞(0,T ;H2(Γ)) + ∥∂tη∥L2(0,T ;H1+s(Γ)) ≤ C

where C > 0 depends only on the given data u0,v0,η0.
To show the derivation of this energy inequality, we begin by multiplying the fluid equa-

tions (2) with u and then integrate over the moving domain Oη. For any t ∈ [0, T ] we
obtain, ˆ

Oη(t)

(∂tu · u+ (u · ∇)u · u) =
ˆ
Oη(t)

(∇ · σ) · u.(7)

Thanks to Reynold’s transport theorem, the first half of the left-hand side of (4.9) can be
written as ˆ

Oη(t)

∂tu · u =
d

dt

ˆ
Oη(t)

1

2
|u|2 −

ˆ
Γη(t)

1

2
|u|2u · nη

Whereas, the advection term can be treated as followsˆ
Oη(t)

(u · ∇)u · u =
1

2

ˆ
Γη

|u|2u · nη.

For the term on the right-hand side of (4.9) we obtainˆ
Oη(t)

(∇ · σ) · u =

ˆ
∂Oη(t)

σnη · u−
ˆ
Oη(t)

|Du|2.

Now, by applying the kinematic and dynamic coupling conditions at the fluid-structure
interface and by using (3) and the fact that η is periodic in x and y, we obtain thatˆ

Γη(t)

σnη · u =

ˆ
Γ

Sη(t) ((σn
η) ◦Aη(t)|Γ) (u ◦Aη(t))|Γ =

ˆ
Γ

Fη∂tη

=

ˆ
Γ

(∂2
t η +∆2η − γΛ2+2s∂tη) · ∂tη

=
d

dt

ˆ
Γ

(|∂tη|2 + |∆η|2) + γ

ˆ
Γ

|Λ1+s∂tη|2.
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Hence, gathering all the equations above we obtain:

d

dt

ˆ
Oη(t)

1

2
|u|2 +

ˆ
Oη(t)

|Du|2 + d

dt

ˆ
Γ

(|∂tη|2 + |∆η|2) + γ

ˆ
Γ

|Λ1+s∂tη|2.(8)

Integration with respect to time implies the energy inequality (6).

2.2. Weak formulation on moving domains. Before we derive the weak formulation
of the deterministic system described in the previous subsection, we define the following
function spaces for the fluid velocity, the structure, and the coupled FSI problem:

ṼF (t) = {u ∈ H1(Oη(t)) : ∇ · u = 0,u = 0 on Γr},
W̃F (0, T ) = L∞(0, T ;L2(Oη(·))) ∩ L2(0, T ; ṼF (·)),
VS = H2(Γ)

WS(0, T ) = W 1,∞(0, T ;L2(Γ)) ∩ L∞(0, T ;VS) ∩H1(0, T ;H1+s(Γ)); 0 < s ≤ 1,

W̃ (0, T ) = {(u,η) ∈ W̃F (0, T )× WS(0, T ) : ∂tη(t) = u ◦Aη(t) on Γ}.
Here bold-faced lettered spaces are used for vector valued functions. We will take test
functions (q,ψ) from the following space:

D̃(0, T ) = {(q,ψ) ∈ C1([0, T ); ṼF (·)× VS) : ψ(t) = q ◦Aη(t), on Γ}.
Now, we can introduce the weak formulation of our problem on moving domain.

Definition 1. We say that (u,η) ∈ W̃ (0, T ), is a weak solution to (2)-(5) if for any test

function Q = (q,ψ) ∈ D̃(0, T ) the following equality holds:

−
ˆ T

0

ˆ
Oη(t)

u · ∂tq−
ˆ T

0

ˆ
Γ

∂tη∂tψ −
ˆ T

0

ˆ
Γη(t)

(u · q)(u · nη)

+

ˆ T

0

ˆ
Oη(t)

((u · ∇)u · q) + 2ν

ˆ T

0

ˆ
Oη(t)

D(u) ·D(q)

+

ˆ T

0

ˆ
Γ

∆η ·∆ψ + γ

ˆ T

0

ˆ
Γ

Λ1+s∂tη : Λ1+sψ =

ˆ
Oη0

u0q(0) +

ˆ
Γ

v0ψ(0).

(9)

Remark 2. Notice that under the assumption that there exists of a family of C1 diffeo-
morphisms Aη, defined in (1), this weak formulation is well-defined. Along with the weak
solutions, we will construct the corresponding maps Aη satisfying these assumptions.

We recall that one of our main results in this manuscript is the existence of a solution to
the FSI problem (2)-(5) in the sense of Definition 1.

2.3. Arbitrary Lagrangian-Eulerian (ALE) formulation on fixed domain. To deal
with the geometric non-linearities resulting from the motion of the fluid domain we trans-
form the fluid equations onto the fixed reference domain O = Γ × (0, 1) and give a weak
formulation equivalent to (9) posed on this fixed domain. For that purpose, we consider a
family of Arbitrary Lagrangian-Eulerian (ALE) mappings that are ubiquitous in the field
of computational fluid-structure interaction. The ALE maps, denoted by Aη, constitute a
family, parametrized by time t ∈ [0, T ], of diffeomorphisms from the fixed domain O onto the
moving domain Oη(t). With the aid of these maps, we will find a relevant weak formulation
on O satisfied by u ◦Aη.
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In this article, these maps will be obtained by considering harmonic extensions of the
structure displacement η in O. That is, the ALE maps solve the following equations:

∆Aη = 0, in O,

Aη = id+ η on Γ, and Aη = id on ∂O \ Γ.(10)

The existence and uniqueness of the solution to (10) is classical. However, we need to prove
that these maps are well-defined, i.e. Aη(t) : O → Oη(t) is indeed a C1-diffeomorphism for
every t ∈ [0, T ] (see Remark 2.1).

Before moving on to analyzing the properties of Aη, we summarize the notation that will
be used to simplify the ALE formulation of the problem. First, we denote the Jacobian of
the ALE maps by

(11) Jη = det ∇Aη.

Next, under the transformation given in (10), the transformed gradient and the transformed
symmetrized gradient of any function gη := g ◦Aη for g ∈ H1(Oη) are given by

∇ηgη = ∇g ◦Aη = ∇gη(∇Aη)
−1 and Dη(u) =

1

2
(∇ηu+ (∇η)Tu).

Similarly, the transformed divergence will be denoted by

divηu = ∇η · u = tr(∇ηu).

Finally, we use wη to denote the ALE velocity:

wη = ∂tAη.

Using this notation we will give the definition of function spaces used to describe the fixed
domain ALE formulation of our FSI problem. We define,

V η
F (t) = {u ∈ H1(O) : ∇η · u = 0,u = 0 on Γr},

WF (0, T ) = L∞(0, T ;L2(O)) ∩ L2(0, T ;V η
F (·)),

W (0, T ) = {(u,η) ∈ WF (0, T )× WS(0, T ) : ∂tη(t) = u|Γ}.

The space of test functions is as follows:

Dη(0, T ) = {(q,ψ) ∈ C1([0, T );V η
F (·) ∩H3(O)× VS) : q|Γ = ψ}.

Now we will now present a weak formulation on the fixed domain O, derivation of which is
the same as given in Section 4.3 [22].

Definition 2. We say that (u,η) ∈ W (0, T ) is a weak solution of the nonlinearly coupled
FSI problem (2)-(5) defined in terms of a fixed domain formulation on O if the following
equation holds for any (q,ψ) ∈ Dη(0, T ):

−
ˆ T

0

ˆ
O
Jηu · ∂tq−

ˆ T

0

ˆ
Γ

∂tη ∂tψ =

ˆ T

0

ˆ
O
∂tJηu · q

−
ˆ T

0

ˆ
O
Jη(u · ∇ηu · q−wη · ∇ηu · q)− 2ν

ˆ T

0

ˆ
O
Jη D

η(u) : Dη(q)

+

ˆ T

0

ˆ
Γ

∆η ·∆ψ + γ

ˆ T

0

ˆ
Γ

Λ1+s∂tη : Λ1+sψ +

ˆ
O
Jη0

u0q(0) +

ˆ
Γ

v0ψ(0).

(12)
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Remark 3. We note that if the ALE map Aη(t) : O 7→ Oη(t), defined as the solution to
(10), is Lipschitz continuous and bijective, then Definitions 1 and 2 are equivalent. In other
words, (u,η) solves (12) iff (ũ,η) where ũ = u ◦A−1

η solves (9) i.e. it is the desired weak
solution of our FSI problem in the sense of Definition 1.

Remark 4. (Notation) Throughout the rest of the manuscript we will be using ũ, where

ũ = u ◦A−1
η ,

to denote the fluid velocity defined on the moving domain Oη, to distinguish between the
solution u defined on the fixed domain O, and the solution ũ defined on the moving domain
Oη.

Next, we discuss conditions that are sufficient to imply bijectivity of the ALE maps Aη.
First, observe that for any k ≥ 0 the solution to (10) satisfies (see e.g. [15]):

∥Aη∥Hk+1
2 (O)

≤ ∥η∥Hk(Γ).(13)

Observe also that, for any p ≥ 2, we have the following regularity result for the harmonic
extension Aη of the boundary data id + η thanks to the discussion presented in Section 5
in [15]:

∥Aη − id∥W2,p(O) ≤ C∥η∥
W

2− 1
p ,p

(Γ)
≤ C∥η∥

H
3− 3

p (Γ)
.(14)

Hence, Morrey’s inequality (see e.g. Theorem 7.26 in [10]) implies that for some C∗
p > 0 the

following inequality holds true for p > 3,

∥∇(Aη − id)∥
C

0,1− 3
p (Ō)

≤ ∥∇(Aη − id)∥W1,p(Ō) ≤ C∗
p∥η∥H3− 3

p (Γ)
.(15)

Now thanks to Theorem 5.5-1 (B) of [6], for as long as the structure displacement η satisfies

∥η∥
H

3− 3
p (Γ)

≤ 1

C∗
p

, for any p > 3,(16)

the map Aη ∈ C1,1− 3
p (Ō) is injective. Thanks to invariance of domains (see [6]), we infer

that Aη is thus a bijection between the domains O and Oη.
We have established the following

Proposition 2.1. If for any δ > 0, η ∈ L∞(0, T ;H2+δ(Γ)) then for some small enough
T0 > 0, the map Aη ∈ L∞(0, T0;C

1,δ(Ō)) solving (10) is bijective and Definitions 1 and 2
are thus equivalent.

2.4. Main results. We are now in a position to state the main results of this article.
In the first two theorems we will state the enhanced spatial regularity of the structure and

the enhanced temporal regularity of the fluid and structure velocities.
Before stating these results we recall the definition of Nikolski spaces. Let the translation

in time by h of a function f be denoted by:

τhf(t, ·) = f(t− h, ·), h ∈ R.
Let Y be a Banach space. Then, for any 0 < m < 1 and 1 ≤ p < ∞, the Nikolski space is
defined as:

(17) Nm,p(0, T ;Y) = {u ∈ Lp(0, T ;Y) : sup
0<h<T

1

hm
∥τhu− u∥Lp(h,T ;Y) < ∞}.
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Now we state our a priori estimates that provide additional regularity for the structure
displacement and the fluid velocity. These are our first two main results of the manuscript.

Theorem 1. Let (ũ,η) be a smooth solution to the FSI problem defined on moving domains,
satisfying (9). Then the following a priori estimates addressing spatial regularity hold true:

(1) The structure displacement η satisfies:

∥η∥L∞(0,T0;H2+δ(Γ)) + ∥η∥L2(0,T0;H3−(s−δ)(Γ)) < C, for any 0 < δ < s.(18)

(2) Moreover, the ALE maps defined by (10) satisfy

∥Aη∥L∞(0,T0;C1,δ(Ō)) < C.(19)

Here, C depends only on the energy norm of the initial data, as well as the H2+s-norm of
the initial displacement η0, and on the viscoelasticity coefficient γ > 0 and on domain O.

Theorem 2. Let (ũ,η) be a smooth solution to the FSI problem defined on moving domains,
satisfying (9). Then the fluid and structure velocities (ũ, ∂tη) satisfy the following a priori
estimate addressing temporal regularity property:

∥ũ ◦Aη∥N 1
8 ,2(0,T0;L2(O))

+ ∥∂tη∥N 1
8 ,2(0,T0;L2(Γ))

< C.(20)

Here, C depends only on the energy norm of the initial data, as well as the H2+s-norm of
the initial displacement η0, and on domain O.

Our third main result of the manuscript is the existence of a weak solution to the nonlin-
early coupled problem, as stated in the following theorem.

Theorem 3. Let the initial data for structure displacement, structure velocity and fluid
velocity be such that η0 ∈ H2+s(Γ),v0 ∈ L2(Γ) and u0 ∈ L2(Oη0

). Then there exists T0 > 0
and at least one weak solution to the system (2)-(5) on [0, T0] in the sense of Definition 1.

In what follows, we will give the proofs of these two theorems. We will start, in Section
3, with the proofs Theorems 1 and 2, and then use these regularity results in Section 4
to construct a weak solution for (2)-(5), thus proving Theorem 3. Specifically, Theorem 1,
which states that at any time the structure displacement is Lipschitz continuous in space,
is crucial in obtaining a positive time-length during which the fluid domain remains non-
degenerate and thus in transforming the fluid equations onto the fixed domain O. It is also
used in the construction of the Bogovski-type operator constructed in the proof of Theorem
2. Theorem 2 is used in Section 4 to obtain compactness of the sequence of approximate
solutions to prove the existence of a solution to the FSI problem in the sense of Definition 2.

3. Regularity results

3.1. The structure regularity result. In this section we will prove Theorem 1 showing
the a priori regularity result for η. To establish this result we work in the fixed domain
setting of Definition 2 and operate under the assumption that η is smooth and that the map
Aη(t) : O 7→ Oη(t), solving (10) is bijective.

In this case, we make note of the following result that gives us the equivalent of the energy
estimate (6) for the fixed domain counterparts.
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Lemma 3.1. Let (u,η) be a weak solution in the sense of the Definition 2 on the fixed
domain O. Assume that the ALE maps Aη(t) : O 7→ Oη(t), solving (10), are bijective and
that for some α > 0 their Jacobians satisfy infO Jη > α > 0 for all t ∈ [0, T ]. Then, for
some constant K1 > 0 depending only on ∥Aη∥L∞(0,T ;W1,∞(O)), ∥(Aη)

−1∥L∞(0,T ;W1,∞(O)) and
α we have,

∥u∥L∞(0,T ;L2(O))∩L2(0,T ;V η
F ) < K1.

Proof of Lemma 3.1. This Lemma is a consequence of the energy estimate (6). Owing to
the assumption that Aη(t) : O 7→ Oη(t) is bijective, we can write

u = ũ ◦Aη,

where (ũ,η) is a solution to the FSI problem in the sense of Definition 1. Then the energy
estimate (6) gives us that

sup
t∈[0,T ]

ˆ
Oη

|ũ|2 +
ˆ T

0

ˆ
Oη

|D(ũ)|2 ≤ C,

where C depends only on the given initial data.
We will use these bounds to obtain the desired estimates for u. The first bounds are

obtained easily by a change of variables as follows,

α sup
0≤t≤T

ˆ
O
|u|2 ≤ sup

0≤t≤T

ˆ
O
Jη|u|2 = sup

0≤t≤T

ˆ
Oη

|ũ|2 ≤ C.

Next, to bound u in L2(0, T ;V η
F ), we must first establish a connection between the gra-

dient and the symmetrized gradient of ũ which is traditionally done with the aid of Korn’s
inequality. However, due to our setting that involves time-varying fluid domains, we appeal
to Lemma 1 in [36] that gives the existence of a universal Korn constantK > 0 which depends
only on the reference domainO and the quantities ∥Aη∥L∞(0,T ;W1,∞(O)), ∥(Aη)

−1∥L∞(0,T ;W1,∞(O)).
For this constant we have that

∥ũ∥H1(Oη) ≤ K∥D(ũ)∥L2(Oη).

These bounds do not immediately translate to desired L2
tH

1
x-bounds for u. We observe that

on the fixed O we have the following relation between the gradient and the transformed
gradient (via ALE maps) of u:

∇u = ∇ηu · ∇Aη.

Hence, we write,

α

ˆ T

0

ˆ
O
|∇u|2dx ≤

ˆ T

0

ˆ
O
Jη|∇u|2dx =

ˆ T

0

ˆ
O
Jη|∇ηu · ∇Aη|2dx

≤ ∥Aη∥2L∞(0,T ;W1,∞(O))

ˆ T

0

ˆ
O
Jη|∇ηu|2dx = ∥Aη∥2L∞(0,T ;W1,∞(O))

ˆ T

0

ˆ
Oη

|∇ũ|2dx

≤ K∥Aη∥2L∞(0,T ;W1,∞(O))

ˆ T

0

ˆ
Oη

|D(ũ)|2dx

≤ K1(∥Aη∥L∞(0,T ;W1,∞(O)), ∥(Aη)
−1∥L∞(0,T ;W1,∞(O))).

This completes the proof of Lemma 3.1. □
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Now, we proceed with the proof of Theorem 1. We will assume that the setting of Lemma
3.1 holds true. The main idea behind the proof of Theorem 1, namely obtaining estimate
(18), is to consider the ”transformed” weak formulation (2) and use for a test function ψ
the function ψ ∼ Λ2κη for 1− s < κ < 1. In fact, to obtain precisely (18), we take

(21) κ = 1− (s− δ), for any 0 < δ < s.

Due to the kinematic coupling condition embedded in the test space Dη(0, T ), we will also
construct a transformed-divergence (divη)-free extension q of ψ to be used as the fluid test
function. In the setting of [21], where tangential interactions between the fluid and the
structure are negligible, this extension, in the case of flat reference geometry, is obtained
simply by extending the boundary data onto the moving domain by a constant in the di-
rection normal to Γ and then composing it with the ALE map. However, constructing an
appropriate extension in our setting is not easy. Firstly, Λ2κη is not guaranteed to have a
solenoidal extension in the moving fluid domain Oη and thus special care has to be taken
in the construction of ψ to ensure that it possesses an extension q in O which is divergence
free in terms of the transformed-divergence operator (divη). Secondly, q and ψ, as a pair of
test functions for (2), must satisfy appropriate bounds.

Now, due to its complicated form, instead of looking for a transformed-divergence-free ex-
tension q of the function ψ directly, we will first find a solenoidal extension of a modification
of ψ, denoted by φ, on O, and then transform this function appropriately to obtain the
desired q. That is, we will find a function φ such that it satisfies divφ = 0 on O and then
we will transform φ into q in a way that guarantees that divηq = 0. This transformation
will be obtained by multiplying φ with the inverse of the cofactor matrix of Aη and using
the Piola identity (see Theorem 1.7-1 in [6]) to obtain (see (28)):

q = J−1
η (∇Aη)φ.(22)

At this point we only have q written in terms of φ, but we still do not have φ defined, and we
still do not have ψ. Next, we work on constructing the test function ψ that ”behaves” like
Λ2κη and satisfies the kinematic coupling condition with q, and has the additional property
that its appropriate modification has a divergence-free extension φ in O.
Naturally, this modification must account for the transformation of φ into q as given in

(22). Hence, we define

ψ := Λ2κη − cξ(23)

where cξ is a correction term that allows us to transform ψ so that its transformation
possesses a divergence free extension in O. More precisely, we let

c =

´
Γ
∇η × Λ2κη´
Γ
∇η × ξ

,(24)

where ξ ∈ C∞
0 ([0, T ] × Γ) is such that the denominator in the definition of the constant c

is non-zero. In fact, we choose ξ such that ∥ξ(t)∥C2(Γ) = 1 and ∇η × ξ(t) = 1 for every
t ∈ [0, T ]. Note that for this choice of ξ we have

sup
0≤t≤T

|c(t)| ≤ sup
0≤t≤T

∥nη(t)∥L2(Γ)∥Λ2κη(t)∥L2(Γ).

Note, due to the periodic boundary conditions imposed on the structure displacement, ψ is
indeed a valid structure test function.
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Now for the solenoidal function φ in (22), we define it to be the solution of a time-
dependent Stokes problem with non-homogeneous boundary data defined as follows.

For any fixed δ such that 0 < δ < s, let κ be as defined in (21), namely κ = 1 − (s − δ).
Then we choose the solenoidal function φ in (22) to be the solution of

φt −∆φ+∇p = 0 in O,

div φ = 0 in O,

φ = Jη(∇Aη)
−1|Γ

(
Λ2κη − cξ

)
on Γ,

φ(t = 0) = φ0,

(25)

such that initial condition satisfies,

φ0|Γ = Jη0
(∇Aη0

)−1|Γ
(
Λ2κη0 − cξ(0)

)
.

Indeed, observe that this is the right choice of boundary value since it satisfies the following
compatibility condition: ˆ

Γ

φ · (0, 0, 1) =
ˆ
Γ

∇η × (Λ2κη − cξ) = 0.

Now, for an appropriate choice of the trace space Gm(Γ × (0, T )), Theorem 6.1 in [7] guar-
antees the existence of a unique solution (φ, p) to (25) that satisfies

∥φ∥L2(0,T ;Hm(O)) + ∥∂tφ∥L2(0,T ;Hm−2(O)) + ∥∇p∥L2(0,T ;Hm−2(O))

≤ ∥Jη(∇Aη)
−1|Γ(Λ2κη − cξ)∥Gm(Γ×(0,T )).(26)

We will consider Gm(ΓT ) with 3
2
< m < 2. This choice of m balances the following two

considerations: the chosen m has to be large enough to bound the time derivative of the test
function q in an appropriate dual space, which will be discussed later in estimate (42) (see
the remark following the estimate), while still ensuring that m is not too large in order to
capture the limited regularity of the boundary data in (25).

For any m > 3
2
the trace space Gm is endowed with the following norm,

∥ϕ∥Gm(Γ×(0,T )) := ∥ϕ∥
L2(0,T ;Hm− 1

2 (Γ))
+ ∥ϕ · n∥

H1(0,T ;Hm− 5
2 (Γ))

+ ∥ϕτ∥
H

2m−1
2m (0,T ;H(1− 2

m )(m− 1
2 )(Γ))

,

where n = (0, 0, 1) is the unit normal to Γ and ϕτ is the projection of ϕ onto the tangent
space of Γ.

Next we comment on the validity of the choice of such test functions (q,ψ). In summary,
we have defined

q = −J−1
η ∇Aη φ, ψ = −(Λ2κη − cξ),(27)

where c is given in (24) and φ solves (25). As mentioned earlier, due to the properties of
the Piola transform (see e.g. Theorem 1.7-1 in [6]), we have

divηq = J−1
η (divφ) = 0.(28)

Moreover, it is also true that q|Γ = ψ on (0, T )×Γ. Hence, we conclude that this pair (q,ψ)
is a valid test function for (12).

We proceed with the proof of Theorem 1 by replacing the test function ψ in the weak
formulation (12) with the above-constructed ψ = −(Λ2κη− cξ), and then express the terms
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containing η that we want to estimate, using the remaining terms from the weak formulation.
We obtain:

γ

2

ˆ T

0

ˆ
Γ

d

dt
|Λ1+κ+sη|2 +

ˆ T

0

ˆ
Γ

|Λ2+κη|2 =
ˆ T

0

c

ˆ
Γ

|∂tΛκη|2

+

ˆ T

0

ˆ
Γ

∂tη ∂tξ +

ˆ T

0

c

ˆ
Γ

∆η ·∆ξ − γ

ˆ T

0

c

ˆ
Γ

Λ1+s∂tη : Λ1+sξ

+

ˆ T

0

ˆ
O
Jηu · ∂tq−

ˆ T

0

ˆ
O
Jη(u · ∇ηu · q−w · ∇ηu · q)

+

ˆ T

0

ˆ
O
∂tJηu · q− 2ν

ˆ T

0

ˆ
O
Jη D

η(u) ·Dη(q)

+

ˆ
O
Jη0

u0q(0) +

ˆ
Γ

v0ψ(0),

:= I1 + ...+ I11.

(29)

In the rest of this proof we will estimate the terms Ij, 1 ≤ j ≤ 11 to get the desired final
estimate.

However, before estimating each term Ij, 1 ≤ j ≤ 11, we plan to obtain bounds for φ that
will result in appropriate bounds for the test function q (see (27)), which will require bounds
for φ|Γ = Jη(∇Aη)

−1|Γ (Λ2κη − cξ) in the trace space Gm(Γ × (0, T )) for a well-chosen
m > 3

2
. More precisely, we plan to use (26) to show the following estimate of φ|Γ:

Proposition 3.2. For any 0 < δ < s let m = 3
2
+ ε where 0 < ε < min{δ/4, s− δ}. Then,

the function φ defined to be the solution of (25), satisfies the following trace estimate:

∥φ|Γ∥Gm(Γ×(0,T )) ≤ C(1 + ∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ))),(30)

where κ is defined in (21).

Proof. (Proof of Proposition 3.2) First, we write m = 3
2
+ ε. Now, observe that for any

0 < ε < 1− κ = s− δ, the following estimate holds true:

∥Λ2κη∥
L2(0,T ;Hm− 1

2 (Γ))
= ∥Λ2κη∥L2(0,T ;H1+ε(Γ)) = ∥η∥L2(0,T ;H2κ+1+ε(Γ)) ≤ ∥η∥L2(0,T ;H2+κ(Γ)).

Due to the trace theorem, the fact that H
3
2
+ε(O) is a Banach algebra, and using the Sobolev

estimate for harmonic extensions (13), we have

∥Jη(∇Aη)
−1|Γ∥H1+ε(Γ) ≤ C∥Jη(∇Aη)

−1∥
H

3
2+ε(O)

≤ C∥Aη∥2
H

5
2+ε(O)

≤ C∥η∥2H2+ε(Γ).

We now interpolate the right-hand side as follows,

∥Jη(∇Aη)
−1|Γ∥L∞(0,T ;H1+ε(Γ)) ≤ C∥η∥2L∞(0,T ;H2+ε(Γ))

≤ C∥η∥
3
2

L∞(0,T ;H2(Γ))∥η∥
1
2

L∞(0,T ;H2+4ε(Γ)),

≤ C∥η∥
1
2

L∞(0,T ;H2+4ε(Γ)).(31)

Hence, choosing

(32) 0 < ε < min{δ
4
, 1− κ}
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and noting that for s > 1, Hs(Γ) is a Banach algebra, we obtain

∥φ|Γ∥L2(0,T ;Hm− 1
2 (Γ))

≤ C∥Jη(∇Aη)
−1Λ2κη|Γ∥L2(0,T ;H1+ε(Γ))

≤ C∥Jη(∇Aη)
−1|Γ∥L∞(0,T ;H1+ε(Γ))∥Λ2κη∥L2(0,T ;H1+ε(Γ))

≤ C∥η∥
1
2

L∞(0,T ;H2+4ε(Γ))∥η∥L2(0,T ;H2+κ(Γ))

≤ C∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ)).(33)

This gives an estimate on the first term in the definition of Gm(Γ × (0, T )). Now we focus
on the second term. We observe that

∥Λ2κη∥
H1(0,T ;Hm− 5

2 (Γ))
≤ C∥η∥H1(0,T ;H−1+ε+2κ(Γ)) ≤ C∥η∥H1(0,T ;H1+s(Γ)) < C.

Hence, by combining this observation with (31) and by applying Theorem 8.2 in [1], we find

∥∂t(Jη∇A−1
η Λ2κη|Γ)∥L2(0,T ;Hm− 5

2 (Γ))
≤ ∥(Jη∇A−1

η )|Γ∥L∞(0,T ;H1+ε(Γ))∥Λ2κη∥
H1(0,T ;Hm− 5

2 (Γ))

+ ∥(Jη∇A−1
η )|Γ∥H1(0,T ;Hε(Γ))∥Λ2κη∥

L∞(0,T ;Hm− 3
2 (Γ))

≤ C∥η∥
1
2

L∞(0,T ;H2+4ε(Γ))∥η∥H1(0,T ;H1+s(Γ))

+ C∥∂tη∥2L2(0,T ;H1+s(Γ))∥η∥L∞(0,T ;Hε+2κ(Γ)).

Since we took ε < min{ δ
4
, 1−κ} and κ < 1, we see that ∥η∥L∞(0,T ;Hε+2κ(Γ)) ≤ ∥η∥L∞(0,T ;H2(Γ)) ≤

C. Hence we conclude that,

∥φ|Γ∥H1(0,T ;Hm− 5
2 (Γ))

≤ C + C∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
.(34)

Finally, interpolating between the spaces in (33) and (34), we obtain

∥φ|Γ∥
H

2m−1
2m (0,T ;H(1− 2

m )(m− 1
2 )(Γ))

≤ ∥φ|Γ∥
2m−1
2m

H1(0,T ;Hm− 5
2 (Γ))

∥φ|Γ∥
1

2m

L2(0,T ;Hm− 1
2 (Γ))

≤ C + C∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ)).(35)

Finally, by combining all the estimates (33), (34) and (35), we arrive at the desired result
(30). This completes the proof of Proposition 3.2. □

This proposition implies that for m = 3
2
+ ε where 0 < ε < s − δ ≪ 1, we can continue

estimating the right hand-side of (26) to obtain

∥φ∥L2(0,T ;Hm(O)) + ∥∂tφ∥L2(0,T ;Hm−2(O)) ≤ C(1 + ∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ))).(36)

Moreover, thanks to the Lions-Magenes theorem, (36) further gives us

∥φ∥
C(0,T ;H

1
2+ε(O))

= ∥φ∥C(0,T ;Hm−1(O)) ≤ C(1 + ∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ))),(37)

which will ultimately be used in deriving bounds for the nonlinear term in the Navier-Stokes
equations.

Now we turn our attention to deriving the relevant estimates for q. We will do so by using
the relation (27) and the estimates (36) and (37).
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First, since we have the embedding H
1
2 (O) ↪→ L3(O), estimate (36) gives us,

∥q∥L2(0,T ;H1(O)) ≤ C∥Aη∥L∞(0,T ;H2.5(O))∥φ∥L2(0,T ;H
3
2 (O))

≤ C∥η∥L∞(0,T ;H2(Γ))(1 + ∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ)))

≤ C∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ)).

(38)

However, to deal with the nonlinear term in the Navier-Stokes equations, this estimate will
not be sufficient. Thus, using (37) we arrive at the following estimate which is later used to
find bounds for the terms I7 and I8:

∥q∥
L∞(0,T ;H

1
2 (O))

≤ C∥Aη∥L∞(0,T ;H2.5(O))∥φ∥L∞(0,T ;Hm−1(O))

≤ C∥η∥L∞(0,T ;H2(Γ))(1 + ∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ)))

≤ C∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ)).

(39)

Finally, we expand:

∂tq = ∂tJη∇A−1
η φ+ Jη∂t∇A−1

η φ+ Jη∇A−1
η ∂tφ.(40)

We know that (see e.g. [6]),

∂tJη = −(Jη)
−2tr((cof Aη)

T∂t∇Aη),

and thus handling of the first two terms on the right-hand side of (40) is straight-forward, as
these terms remain bounded in L2(0, T ;L2(O)). For the third term on the right-hand side
of (40) we apply Theorem 8.1 in [1]. Using (36), we observe that for

m =
3

2
+ ε, ε <

δ

8
, and any q >

3

2

the following bound on q holds true:

∥∂tq∥L2(0,T ;Hm−2(O)) ≤ C∥Jη∇A−1
η ∥L∞(0,T ;Hq(O))∥∂tφ∥L2(0,T ;Hm−2(O))

≤ C∥η∥2L∞(0,T ;H2+ε(Γ))∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ))

≤ C∥η∥
7
4

L∞(0,T ;H2(Γ))∥η∥
1
4

L∞(0,T ;H2+8ε(Γ))∥η∥
1
2

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ))

≤ C∥η∥
3
4

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ)).(41)

This completes the derivation of estimates for q and ψ that we will use to bound the integrals
Ij, 1 ≤ j ≤ 11 in (29).

We start discussing the bounds of integrals Ij, 1 ≤ j ≤ 11 in (29) by noticing that since
ξ is smooth, the bounds for the first 4 terms on the right hand side follow straight from the
energy estimates derived in (6). That is,

|I1 + ...+ I4| ≤ C,

where C > 0 depends only on the given data u0,v0,η0. Note that, this constant technically
also depends on the norms ∥∂tξ∥L2(0,;L2(O)) and ∥ξ∥L∞(0,T ;C2(Γ)) which, according to our
choice, are equal to 1.
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Next, we present the derivation of the estimates that require further explanation. We
begin with I5. To estimate I5 we will use (41). Since Hr

0(O) = Hr(O) for any r < 1
2
, we

obtain the following estimate which holds for 3
2
< m < 2:

|I5| = |
ˆ T

0

ˆ
O
Jηu · ∂tq| ≤

ˆ T

0

∥Jηu∥H2−m(O)∥∂tq∥Hm−2(O)(42)

≤ C

ˆ T

0

∥Jη∥H 3
2 (O)

∥u∥H1(O)∥∂tq∥Hm−2(O)

≤ C∥Aη∥L∞(0,T ;H
5
2 (O))

∥u∥L2(0,T ;H1(O))∥∂tq∥L2(0,T ;Hm−2(O))

≤ C∥η∥L∞(0,T ;H2(Γ))∥u∥L2(0,T ;H1(O))∥η∥
3
4

L∞(0,T ;H2+δ(Γ))
∥η∥L2(0,T ;H2+κ(Γ))

≤ CK8
1 +

1

16
∥η∥2L∞(0,T ;H2+δ(Γ)) +

1

8
∥η∥2L2(0,T ;H2+κ(Γ)),

where K1 is the constant from Lemma 3.1 that depends on α1, ∥Aη∥L∞(0,T ;W1,∞(O)) and
∥(Aη)

−1∥L∞(0,T ;W1,∞(O)).

Remark 5. Note that the choice 3
2
< m < 2 plays an important role here as we use the

duality between Hr and H−r for r < 1
2
on the right hand-side in the first line of the estimate

of I5 above.

To estimate the nonlinear terms in I6 we use (39), to obtain

|I6| ≤ C

ˆ T

0

(∥u+w∥L6(O))∥u∥H1(O)∥q∥L3(O) ≤ C

ˆ T

0

∥u∥2H1(O)∥q∥H 1
2 (O)

≤ C∥u∥2L2(0,T ;H1(O))∥q∥L∞(0,T ;H
1
2 (O))

≤ CK8
1 +

1

16
∥η∥2L∞(0,T ;H2+δ(Γ)) +

1

8
∥η∥2L2(0,T ;H2+κ(Γ)).

Similarly, using (39) we estimate I7:

|I7| = |
ˆ t

0

ˆ
O
∂tJηu · q| ≤ ∥w∥L2(0,T ;H1(O))∥u∥L2(0,T ;L6(O))∥q∥L∞(0,T ;L3(O))

≤ CK4
1 +

1

16
∥η∥2L∞(0,T ;H2+δ(Γ)) +

1

8
∥η∥2L2(0,T ;H2+κ(Γ)).

The symmetrized gradient integral I8 is estimated using (38) to obtain

|I8| ≤ ∥u∥L2(0,T ;H1(O))∥q∥L2(0,T ;H1(O))

≤ CK4
1 +

1

16
∥η∥2L∞(0,T ;H2+δ(Γ)) +

1

8
∥η∥2L2(0,T ;H2+κ(Γ)).

Hence, absorbing appropriate terms on the left hand side we obtain

1

4
∥η∥2L∞(0,T ;H2+δ(Γ)) +

1

2
∥η∥2L2(0,T ;H2+κ(Γ)) ≤ K2 + ∥η0∥2H2+δ(Γ),(43)

where the constant K2 depends on ∥Aη∥L∞(0,T ;W1,∞(O)), ∥(Aη)
−1∥L∞(0,T ;W1,∞(O)) and α due

to its dependence on K1 from Lemma 3.1. Recall here that for any 0 < δ < s, we chose
κ = 1− (s− δ).
Bootstrap argument: We will next prove the estimate (19) i.e. we will get rid of the

dependence of K2, appearing in the right-hand side of (43), on the norm ∥Aη∥L∞(0,T ;W1,∞(O))
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and on α < infO×(0,T ) Jη. We do this by possibly shrinking the time length on which this
desired estimate holds by using a bootstrap argument [29, Propostion 1.21]. Observe that,
if for a fixed α and some C0 > 0 we have

∥Aη∥L∞(0,T ;W1,∞(O)) ≤ 2C0 and inf
O×(0,T )

Jη > α,(44)

then according to (43) there exists a constant K2 > 0 depending on C0 such that,

∥η∥L∞(0,T ;H2+δ(Γ)) ≤ K2.

Furthermore, Sobolev and interpolation inequalities imply for any δ > 0 that

∥Aη −Aη0
∥L∞(0,T ;W1,∞(O)) ≤ C∥Aη −Aη0

∥
L∞(0,T ;H

5+δ
2 (O))

≤ C∥η − η0∥L∞(0,T ;H2+ δ
2 (Γ))

≤ C∥η − η0∥
2+ δ

2
2+δ

L∞(0,T ;H2+δ(Γ))
∥η − η0∥

δ
2

2+δ

L∞(0,T ;L2(Γ))

≤ C(K2)
2+ δ

2
2+δ T

δ
2(2+δ)∥∂tη∥

δ
2(2+δ)

L∞(0,T ;L2(Γ))

≤ C(K2)
βC1−β

1 T 1−β, where β =
2 + δ

2

2 + δ
,(45)

where C depends only on O, K2 depends on C0, and the constant C1 appearing in (6)
depends on the given data u0,v0,η0.
Similarly,

inf
O×(0,T )

Jη(t) ≥ inf
O

J0 − sup
O×(0,T )

|Jη − Jη0
|

≥ inf
O

J0 − C∥Aη −Aη0
∥L∞(0,T ;W1,∞(O))

≥ inf
O

J0 − C(K2)
βC1−β

1 T 1−β.(46)

Hence, for small enough T0 > 0, the hypothesis (44) then implies that

∥Aη∥L∞(0,T0;W1,∞(O)) ≤ C0 and inf
O×(0,T0)

Jη > 2α.(47)

This concludes our bootstrap argument and thus the proof of Theorem 1.
Next ,we focus on the proof of Theorem 2 to establish the estimate (20).

3.2. The temporal regularity result for fluid and structure velocities. In this section
we prove Theorem 2. Namely, the aim of this section is to show that for (u,η), a pair of
smooth functions that solves (12), there exists a constant C > 0, depending only on O and
the given data, such that the following estimate holds for any h > 0:

∥τhu− u∥L2(h,T0;L2(O)) + ∥τh∂tη − ∂tη∥L2(h,T0;L2(Γ)) ≤ Ch
1
8 ,(48)

where T0 is the time length appearing in Theorem 1.
To obtain the two terms on the left-hand side of the estimate above, we will construct

an appropriate pair of test functions (q,ψ) for the weak formulation (12) on the fixed
domain O. A typical approach to obtaining results of this kind for the weak solutions
of Navier-Stokes equations posed on a fixed domain, is to use the time integral

´ t
t−h

of
the solution as a test function. This approach cannot directly be employed in the case of
moving boundary problems since the fluid velocity at different times is defined on different
domains. Thus we face issues, due to the motion of the fluid domain, that arise due to
the incompressibility condition and the kinematic coupling condition. Our plan, in the
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spirit of [11], is to construct the desired test function by first modifying the solution (u,v)
appropriately and then integrating it from t − h to t, for any t ∈ [0, T ] and h > 0. This
modification must preserve the divergence of the fluid velocity and its boundary behavior (i.e.
the kinematic coupling condition) which is not trivial to find due to the time-varying domain.
Note also that, due to the mismatch between the spatial regularity of the structure velocity
∂tη and that of the test function ψ in the weak formulation Definition 2, this modification
must also include a construction of a spatially regularized version of the structure velocity
so that its time integral can be used as a test function in (12).

For the construction of the fluid test function, we will first extend the structure velocity
v := ∂tη in the steady fluid domain O, subtract it from u and then integrate the resulting
function from t − h to h against an appropriate kernel that possesses the desired property
of preserving divergence in O and flux across ∂O. Now, to balance out this extra term in
the fluid test function, i.e. the extension of v, and to construct the test function ψ that has
the desired spatial H2-regularity, we add the extension of the structure velocity v projected
on a finite dimensional subspace of H2 to the fluid test function. This finite-dimensional
projection also enjoys nice properties that result in the second term appearing on the left-
hand side of (20).

Finally, due to the addition of these two extra terms (i.e. the extension of v and that of its
finite dimensional truncation) the transformed-divergence of the fluid test function has to be
corrected. For that purpose, we construct a Bogovski-type operator on the physical moving
domain with the aid of the Bogovski operator on the fixed domain O. This is crucial. Since,
on the fixed domain, the test functions are required to satisfy the transformed-divergence-
free condition, we correct it by multiplying it with the inverse of the cofactor matrix of Aη

and by using the Piola identity. We will now give precise definitions of our construction.
We fix h > 0. Let PM denote the orthonormal projector in L2(Γ) onto the space

span1≤i≤M{φi}, where φi satisfies −∆φi = λiφi and φi = 0 on ∂Γ. For any v ∈ L2(Γ) we use
the notation vM = PMv (i.e. subscript M) where PM is the projection onto span1≤j≤M{φj}.
We know that λM ∼ M2 and hence we will choose

λM = ch− 3
4 .

We now construct a simple extension of v := ∂tη in the fluid domain. Let w = vχ where χ
is a cut-off function applied to v so that it does not have any contributions at the boundary
∂O i.e. χ is a function smooth in O such that χ(x, y, 1) = 1 and χ(x, y, 0) = 0. Then, for
any t ∈ [0, T0], we define our fluid test function as follows (see also [30]):

q(t) := (Jη(t))
−1∇Aη(t)

ˆ t

t−h

(
Jη(s)(∇Aη(s))

−1(u(s)−w(s))
)
ds

+

ˆ t

t−h

(
wM(s)−

(
bM(s, t)

b0(s, t)

)
ξ0(s)χ

)
ds

− (Jη(t))
−1∇Aη(t)

ˆ t

t−h

B
(
div
(
Jη(s)(∇Aη(s))

−1w(s)− Jη(t)(∇Aη(t))
−1wM(s)

)
+

(
bM(s, t)

b0(s, t)

)
div(Jη(t)∇A−1

η (t)ξ0(s)χ)
)
ds.
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In other words, we define the fluid test function q as the time integral from t − h to t of a
modification uM of u:

q(t) :=

ˆ t

t−h

[
P−1
t Ps(u(s)−w(s)) + (wM(s)− cM(s, t)ξ0(s)χ)

]
ds

−
ˆ t

t−h

P−1
t B

(
div (Psw(s)− PtwM(s) + cM(s, t)Ptξ0(s)χ)

)
ds

:=

ˆ t

t−h

uM(s, t)ds,

(49)

where:

• w = vχ and wM = vMχ,
• χ is a smooth function such that χ(x, y, 1) = 1 and χ(x, y, 0) = 0 for (x, y) ∈ Γ,
• Pt(f) := ((Jη)∇A−1

η · f)(t) is the Piola transformation composed with the ALE map

Aη for any f ∈ L2(O).
• B is the Bogovski operator on the fixed domain O. Recall that (see e.g. [9, 8]) if´

O f = 0 then

∇ · B(f) = f, and ∥B(f)∥H1
0(O) ≤ c∥f∥L2(O).

• The correction term cMξ0χ where cM(s, t) = b(s,s)−bM (s,t)
b0(s,t)

∈ L∞([0, T ]2) ensures that

the above condition
´
O f = 0 is met.

• Here, bM(s, t) =
´
Γ
(∇η(t) × vM(s)), b(s, t) =

´
Γ
(∇η(t) × v(s)) and b0(s, t) =´

Γ
(∇η(t)× ξ0(s)),

• ξ0 ∈ C∞
0 (Γ× [0, T0]) is chosen such that b0(s, t) = 1 for any s, t ∈ [0, T0].

For the structure test function we define:

ψ(t) :=

ˆ t

t−h

(vM(s)− cM(s, t)ξ0(s)) ds.(50)

We will first show that q has the required regularity. Thanks to the embedding

W 1,∞(0, T ;L2(Γ)) ∩ L∞(0, T ;H2(Γ)) ↪→ C0,θ(0, T ;H2−2θ(Γ)).

we have for any θ ∈ (0, 1) and m ≥ 2− 2θ, that

∥τhη − η∥L∞(0,T0;Hm(Γ)) ≤ ∥η∥C0,θ(0,T0;H2−2θ(Γ))h
θ ≤ Chθ.(51)

Moreover, setting s = t− h for any t ∈ [h, T0] we see that

|cM(s, t)| ≤ |b(s, s)− bM(s, t)| = |
ˆ
Γ

(∇η(t)−∇η(s))× vM(s) +∇η(s)× (vM − v)(s)|

≤ ∥η(t)− η(s)∥H1(Γ)∥vM∥L2(Γ) + ∥η(s)∥H2(Γ)∥vM(s)− v(s)∥H−1(Γ)

≲ h
1
2∥η∥

C0, 12 (0,T0;H1(Γ))
+ λ−1

M ∥v(s)∥H1(Γ)

≤ Ch
1
2 .(52)
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This estimate along with (18) and Lemma 3.1 further gives us the necessary bounds for the
test function q:

∥q∥L∞(0,T0;H1(O)) ≤ sup
0≤t≤T0

(
∥Pt∥2H2.5+δ(O)

ˆ t

t−h

(∥u+w∥H1(O) + ∥wM∥H1(O) + |cM(s, t)|)ds
)

≤ h
1
2∥η∥4L∞(0,T0;H2+δ(Γ))(∥u∥L2(0,T0;H1(O)) + ∥w∥L2(0,T0;H1(O)))

≤ Ch
1
2 .(53)

Next, we readily observe that,

q|Γ = ψ, on (0, T )× Γ.

Moreover, thanks to Theorem 1.7-1 in [6], we have that

divη(t)qM(t) = Jη(t)
−1

ˆ t

t−h

div(Psu(s)) = Jη(t)
−1

ˆ t

t−h

Jη(s) div
η(s)u(s) = 0.(54)

Hence (qM ,ψM) is a valid test function for (12). For this pair of test functions we get:

−
ˆ T0

h

ˆ
O
Jηu · ∂t

(ˆ t

t−h

uM

)
−
ˆ T0

h

ˆ
Γ

∂tη

(
∂t

ˆ t

t−h

vM

)
=

ˆ T0

h

ˆ
Γ

∆η ·∆ψM

+ γ

ˆ T0

h

ˆ
Γ

Λ1+s∂tη : Λ1+sψM −
ˆ T0

h

ˆ
O
Jη(u · ∇ηu · q−wη · ∇ηu · qM)

+

ˆ T0

h

ˆ
O
∂tJηu · qM − 2ν

ˆ T0

h

ˆ
O
Jη D

η(u) : Dη(qM)

= I1 + ...+ I5.

(55)

Before estimating each term on the right-hand side of the equation above, we observe that
the first term on the left-hand side can be written as,

ˆ T0

h

ˆ
O
Jηu · ∂t

(ˆ t

t−h

uM

)
=

ˆ T0

h

ˆ
O
Jηu ·

(
uM(t, t)− uM(t− h, t) +

ˆ t

t−h

∂tuM(s, t)ds

)
=

ˆ T0

h

ˆ
O
Jηu · (u(t)− u(t− h))

+

ˆ T0

h

ˆ
O
Jηu ·

(
uM(t, t)− u(t)− uM(t− h, t) + u(t− h) +

ˆ t

t−h

∂tuM(s, t)ds

)
= I10 + I20 + I30 .

Observe that the term I10 on the right-hand side gives us the desired term ∥τhu−u∥L2(0,T ;L2(O))

in the left-hand side of (48) since we can write

I10 =

ˆ T0

h

ˆ
O
Jη(t)u(t) · (u(t)− u(t− h))

=
1

2

ˆ T0

h

ˆ
O
Jη
(
|u(t)|2 − |u(t− h)|2 + |u(t)− u(t− h)|2

)
.
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The second term on the right side in the expression for I10 above is the desired term, whereas
the first one can be bounded as follows:

ˆ T0

h

ˆ
O
Jη
(
|u(t)|2 − |u(t− h)|2

)
=

ˆ T0

h

ˆ
O
Jη(t)|u(t)|2 − Jη(t− h)|u(t− h)|2

−
ˆ T0

h

ˆ
O
(Jη(t)− Jη(t− h))|u(t− h)|2

≤ h

(
sup

0≤t≤T0

ˆ
O
Jη(t)|u(t)|2 + ∥∂tJη∥L∞(0,T0;L2(O))∥u∥2L2(0,T0;L4(O))

)
≤ Ch.

Before analyzing I20 we treat the third term I30 . We observe that for any t ∈ (0, T0) we have

∥∂tuM(s, t)∥
L

3
2 (O)

≤ ∥∂tP−1
t Ps(u(s)−w(s))∥

L
3
2 (O)

+ sup
t−h≤s≤t

∂tcM(s, t)∥ξ0(s)χ∥L2(O)

≤ C(∥Ps∥L∞(O)∥∂tPt∥L2(O)∥u(s)−w(s)∥L6(O) + ∥v(t)∥H1(Γ)∥vM(s)∥L2(Γ)).

Hence, we arrive at the following estimate for the term I30 ,

|I30 | = |
ˆ T0

h

ˆ
O
Jηu

(ˆ t

t−h

∂tuM(s, t)ds

)
dxdt|

≤ h
1
2

ˆ T0

h

(
∥Jη(t)∥L6(O)∥u(t)∥L3(O)

(ˆ t

t−h

∥∂tuM(s, t)∥2
L

3
2 (O)

ds

) 1
2

)
dt

≤ Ch
1
2 .

Now we begin with our calculations for the term I20 . First note that

∥wM −w∥L2(O) ≤ C∥vM − v∥
H− 1

2 (Γ)
≤ Cλ

− 3
4

M ∥v∥H1(Γ).

Moreover, thanks to the embeddingH
1
2 (O) ↪→ L3(O) and the fact that the ALE maps satisfy

(13), the estimate (51) gives us,

sup
t−h≤s≤t

∥Ps − Pt∥L3(O) ≤ ∥η∥L∞(0,T0;H2+δ(Γ)) sup
t−h≤s≤t

∥η(s)− η(t)∥H1(Γ)

≤ h
1
2∥η∥

C0, 12 (0,T0;H1(Γ))

≤ Ch
1
2 .

These two estimates put together give us,

ˆ T0

h

∥uM(t− h, t)− u(t− h)∥2L2(O)dt

≤
ˆ T0

h

(∥P−1
t ∥L∞(O)∥Pt−h − Pt∥L3(O)∥u−w∥L6(O) + ∥w −wM∥L2(O) + |cM(t− h, t)|)2dt

≤ Ch.
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Hence, for the term I20 we find,

|I20 | = |
ˆ T0

h

ˆ
O
Jηu · (uM(t, t)− u(t)− uM(t− h, t) + u(t− h))dxdt|

≤ ∥Jη∥L∞(0,T0;Lp(O))∥u∥L2(0,T0;H1(O))(

ˆ T0

h

∥uM(t− h, t)− u(t)∥2L2(O)dt)
1
2

≤ Ch
1
2 .

Similarly, we treat the second term on the left-hand side of (55) which will produce the
second term on the left-hand side of our desired inequality (48). We write,

ˆ T0

h

ˆ
Γ

v(t) ∂t

(ˆ t

t−h

vM(s)ds

)
dt =

ˆ T0

h

ˆ
Γ

v(t)(vM(t)− vM(t− h)− (cM(t, t)− cM(t− h, t))ξ0)

= J1
0 + J2

0 .

Observe that due to orthonormality of PM we have

J1
0 =

ˆ T0

h

ˆ
Γ

v(t)(vM(t)− vM(t− h))dxdydt

=

ˆ T0

h

ˆ
Γ

vM(t)(vM(t)− vM(t− h))dxdydt

=
1

2

ˆ T0

h

ˆ
Γ

(|vM(t)|2 − |vM(t− h)|2 + |vM(t)− vM(t− h)|2)dxdydt.

Here, as mentioned previously, the second term is another one of our desired terms in (48)
whereas the first term can be bounded as follows,

ˆ T0

h

(∥vM(t)∥2L2(Γ) − ∥vM(t− h)∥2L2(Γ))dt =

ˆ T0

T0−h

∥vM(t)∥2L2(Γ)dt ≤ h∥v∥2L∞(0,T0;L2(Γ)).

Notice that here we also used the property of projection that states ∥PMv∥Hk ≤ γ
m−k

2 ∥v∥Hm .
Thanks to (52), we readily further deduce that

|J2
0 | = |

ˆ T0

h

ˆ
Γ

(cM(t, t)− cM(t− h, t))ξ0| ≤ Ch
1
2 .

This completes the treatment of the terms on the left-hand side of (55). Hence, by combining
all the estimates, we summarize that so far we have

∥τhu− u∥L2(0,T0;L2(O)) + ∥τh∂tη − ∂tη∥L2(0,T0;L2(Γ)) ≤ Ch
1
2 +

8∑
j=1

|Ij|

Now we estimate the terms Ij, j = 1, ..., 5 that appear on the right-hand side of (55). We
start with I1, which is one of the more crucial terms. Thanks to the property of projection
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operators stating ∥PMv∥Hk ≤ γ
m−k

2 ∥v∥Hm and the estimate (52), we obtain

|I1| = |
ˆ T0

h

ˆ
Γ

∆η ·∆ψ| =
ˆ T0

h

ˆ
Γ

∆η ·∆
(ˆ t

t−h

(vM(s)− cM(s, t)ξ0(s)) ds

)
≤
ˆ T0

h

ˆ t

t−h

∥η(t)∥H2(Γ)

(
∥vM(s)∥H2(Γ) + |cM(s, t)|∥ξ0(s)∥H2(Γ)

)
dsdt

≤
ˆ T0

h

ˆ t

t−h

∥η(t)∥H2(Γ)

(
λM∥v(s)∥L2(Γ) + |cM(s, t)|∥ξ0(s)∥H2(Γ)

)
dsdt

≤ Ch∥η∥L∞(0,T0;H2(Γ))(λM∥v∥L∞(0,T0;L2(Γ)) + h
1
2 ) ≤ Ch

1
4 .

Similarly, for the next term we obtain

|I2| = |γ
ˆ T0

h

ˆ
Γ

Λ1+s∂tη : Λ1+sψ| ≤ h
1
2∥v∥L2(0,T ;H1+s(Γ)) ≤ Ch

1
2 .

The next two terms I3, I4 are treated using (53). For the nonlinear term we have

|I3| = |
ˆ T0

h

ˆ
O
Jη(u · ∇ηu · q−wη · ∇ηu · q)|

≤ C∥Jη∥L∞(0,T0;L6(O))∥u∥L2(0,T0;L6(O))∥u∥L2(0,T0;H1(O))∥q∥L∞(0,T0;L6(O))

≤ C∥η∥L∞(0,T0;H2(O))∥u∥2L2(0,T0;H1(O))∥q∥L∞(0,T0;H1(O))

≤ Ch
1
2 .

The terms I4 and I5 are treated identically. For I4 we use the fact that wη is the harmonic
extension of v in O which implies that ∥∂tAη∥Hk+1

2 (O)
≤ C∥v∥Hk(Γ). Hence (53) leads to

|I4| = |
ˆ T0

h

ˆ
O
∂tJηu · q| ≤ ∥∂tJη∥L2(0,T ;L2(O))∥u∥L2(0,T ;H1(O))∥q∥L∞(0,T ;H1(O)) ≤ Ch

1
2 .

Next, for I5 we see that,

|I5| = |
ˆ T0

h

ˆ
O
Jη D

η(u) : Dη(q)| ≤ C∥Jη∥L∞(0,T ;L∞(Γ))∥Dη(u)∥L2(0,T ;L2(O))∥Dη(q)∥L2(0,T ;L2(O))

≤ C∥Jη∥L∞(0,T ;L∞(Γ))∥(∇Aη)
−1∥2L∞(0,T ;L∞(Γ))∥∇u∥L2(0,T ;L2(O))∥∇q∥L2(0,T ;L2(O))

≤ C∥η∥3L∞(0,T ;H2+δ(Γ))∥u∥L2(0,T ;H1(O))∥q∥L2(0,T ;H2(O)) ≤ Ch
1
2 .

Finally, we collect all the terms and obtain that,

∥τhu− u∥L2(h,T0;L2(O)) + ∥τhvM − vM∥L2(h,T0;L2(Γ)) ≤ Ch
1
4 .

Moreover, due to the following property of the projection PM

∥v − PMv∥L2(0,T ;L2(Γ)) ≤ Cλ
− 1

2
M ∥v∥L2(0,T ;H1(Γ)) ≤ Ch

3
8∥v∥L2(0,T ;H1(Γ)),

we come to our desired result,

∥τhu− u∥2L2(h,T0;L2(O)) + ∥τhv − v∥2L2(h,T0;L2(Γ)) ≤ Ch
1
4 .

This completes the proof of Theorem 2.
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4. Existence result

In this section we will provide a brief proof of Theorem 3, namely, we prove the existence
of a weak solution to our FSI problem. We will work with the problem posed on the fixed
domain, and consider a weak formulation of the problem in the sense of Definition 2. The
plan is to discretize the problem in time and construct approximate solutions by employing
the Lie operator splitting strategy to decouple the FSI problem into a fluid and a structure
subproblem. This is done in the spirit of [22] (see also [23, 34]). For the convenience of
the reader we will reproduce all the important steps in this section and for complementary
details we refer to [35]. We introduce the splitting scheme in the next subsection and then
discuss the strategy for the rest of our proof in subsequent subsections.

4.1. The Lie operator splitting scheme. The overarching idea behind the Lie operator
splitting scheme is to solve the evolution equation dϕ

dt
+S(ϕ) = 0 by splitting the operator S as

a nontrivial sum S = S1+S2. The time interval (0, T ) is divided into N sub-intervals of size
∆t and on each sub-interval (n∆t, (n+1)∆t) the evolution equations dϕi

dt
+Si(ϕi) = 0, i = 1, 2,

are solved. In our case, we semidiscretize the problem in time and use operator splitting to
divide the coupled problem along the dynamic coupling condition into two subproblems: a
fluid and a structure subproblem. The initial value for the structure sub-problem is taken
to be the solution from the previous step, whereas the initial value for the fluid sub-problem
is taken to be the just calculated solution found in the first sub-problem.

Our strategy is that in the first (structure) subproblem, we keep fluid velocity the same
and update only the structure displacement and structure velocity, while in the second (fluid)
subproblem we update the fluid and the structure velocities while keeping the structure dis-
placement the same. The kinematic coupling condition is enforced in the second subproblem.

For any N ∈ N, we denote the time step by ∆t = T
N

and use the notation tn = n∆t
for n = 0, 1, ..., N . For any N ∈ N we introduce the following discrete total energy and
dissipation for i = 0, 1 and n = 0, 1, .., N − 1:

E
n+ i

2
N =

1

2

(ˆ
O
Jn|un+ i

2 |2dx+ ∥vn+ i
2∥2L2(Γ) + ∥ηn+ i

2∥2H2(Γ) +
1

N
∥ηn+ i

2∥2H3(Γ)

)
,

Dn
N = ∆t

ˆ
O
2νJn|Dηn(un+1)|2dx+ ∥vn+1∥2H1+s(Γ).

(56)

The splitting scheme consisting of the two subproblems is defined as follows. Let (u0,η0,v0) =

(u0,η0,v0) be the initial data. Then at the jth time level, we update the vector (un+ j
2 ,ηn+ j

2 ,vn+ j
2 ),

where j = 1, 2 and n = 0, 1, 2, ..., N − 1, according to the following scheme.
Structure sub-problem: For any n ≤ N we look for (ηn+ 1

2 ,vn+ 1
2 ) such that

un+ 1
2 = un,ˆ

Γ

(ηn+ 1
2 − ηn)ϕ = (∆t)

ˆ
Γ

vn+ 1
2ϕ,

ˆ
Γ

(
vn+ 1

2 − vn
)
ψ + (∆t)

ˆ
Γ

∆ηn+ 1
2 ·∆ψ +

(∆t)

N

ˆ
Γ

∇3ηn+ 1
2 · ∇3ψ = 0,

(57)

for any ϕ ∈ L2(Γ) and ψ ∈ H3(Γ) ∩ VS.

Remark 6. We notice that we have augmented this subproblem with a regularizing term,
which is the last term on the left hand-side of the third equation (the elastodynamics equation)
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in (57). This term will vanish when we pass N → ∞. The presence of this term is attributed
to the fact that splitting the FSI problem along the dynamic coupling condition causes a
mismatch between the structure velocity and the trace of the fluid velocity on Γ (see also
the second subproblem (58)). This is not ideal for an application of the regularity result of
Theorem 1 at the level of approximate formulations (see Theorem 4.3 below). This mismatch
is taken care of by using bounds on numerical dissipation that result from the addition of this
regularization term (see the discussion following (67)).

Before commenting on the existence of a solution to the structure subproblem (57), we
introduce the second subproblem that updates the fluid and structure velocities in the fixed
domain formulation (12).

Fluid sub-problem: Introduce the following functional space for the fluid velocity

V n := {u ∈ H1(O) : ∇ηn · u = 0 on O,u = 0 on Γr}.
We look for (un+1,vn+1) ∈ V n ×H1+s(Γ) such that the following equations are satisfied for
any (q,ψ) ∈ V n ×H1+s(Γ) such that q|Γ = ψ:

ηn+1 := ηn+ 1
2 ,ˆ

O
Jn
(
un+1 − un+ 1

2

)
q+

1

2

ˆ
O

(
Jn+1 − Jn

)
un+1 · q

+
1

2
(∆t)

ˆ
O
Jn((un −wn+1) · ∇ηn

un+1 · q− (un −wn+1) · ∇ηn

q · un+1)

+ 2ν(∆t)

ˆ
O
JnDηn

(un+1) ·Dηn

(q) +

ˆ
Γ

(vn+1 − vn+ 1
2 )ψ

+ (∆t)

ˆ
Γ

Λ1+svn+1 · Λ1+sψ = 0,

(58)

and the kinematic coupling condition is satisfied

un+1|Γ = vn+1.

Here, we use the notation

wn =
1

∆t
(Aηn+1 −Aηn), Jn = det∇Aηn ,

where Aη denotes the solution to (10) corresponding to the boundary data id+ η.
Equations (57) and (58) define the two steps in our splitting scheme.
Next we discuss the existence of unique solutions for the two subproblems (57) and (58).

Theorem 4.1 (Existence and uniqueness result for the subproblems). The following state-
ments hold true:

(1) Given ηn ∈ H2(Γ) and vn ∈ L2(Γ) there exist unique ηn+ 1
2 ,vn+ 1

2 ∈ H2(Γ) that solve
(57), and the following semidiscrete energy inequality holds:

En+ 1
2 +

1

2
∥vn+ 1

2 − vn∥2L2(Γ) +
1

2
∥ηn+ 1

2 − ηn∥2H2(Γ) +
1

2N
∥∇3ηn+ 1

2 −∇3ηn∥2L2(Γ) ≤ En.(59)

(2) Given (un+ 1
2 ,vn) ∈ V n−1 × H1+s(Γ) and vn+ 1

2 ∈ H2(Γ), and ηn ∈ H2(Γ) assume
that infO Jn > α for some fixed α > 0 for every 0 ≤ n ≤ N . Then there exists a
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unique (un+1,vn+1) ∈ V n ×H1+s(Γ) that solves (58), and the solution satisfies the
following energy estimate

En+1 +Dn +
1

2

ˆ
O
Jn
(
|un+1 − un|2

)
+

1

2

ˆ
Γ

|vn+1 − vn+ 1
2 |2 ≤ En+ 1

2 ,(60)

where En and Dn are defined in (56).

Proof. The proof of this theorem involves an application of the Lax-Milgram Lemma in a
way similar to the proofs of Propositions 1, 2, 3 and 4 in [22]. □

The rest of the proof of Theorem 3 can be divided into 3 parts: Constructing approximate
solutions, finding uniform estimates for the approximate solutions and then passing N → ∞
to prove that the limiting function is the desired solution, which involves a construction of
appropriate test functions to be able to pass to the limit. We start with the construction of
approximate solutions.

4.2. Approximate solutions. In this subsection we will define two sequences of approx-
imate solutions corresponding to the fluid velocity u, structure displacement η and the
structure velocity v. First, as is common with time-discretizations, we define the following
approximations that are piece-wise constant in time: For t ∈ (n∆t, (n+ 1)∆t] we let

uN(t, ·) = un+1, ηN(t, ·) = ηn+1, vN(t, ·) = vn+1, v∗
N(t, ·) = vn+ 1

2 .(61)

Furthermore, we define the corresponding piecewise linear interpolations: for t ∈ [tn, tn+1]
we let

ũN(t, ·) =
t− tn

∆t
un+1 +

tn+1 − t

∆t
un, ṽN(t, ·) =

t− tn

∆t
vn+1 +

tn+1 − t

∆t
vn.

η̃N(t, ·) =
t− tn

∆t
ηn+1 +

tn+1 − t

∆t
ηn.

(62)

Observe that

∂tη̃N = v∗
N .

We now define AηN
as the piecewise constant interpolations of the approximate ALE maps

Aηn . Observe that, by definition, AηN
solves (10) with boundary value ηN on Γ. We denote

its Jacobian by JN := det∇AηN
, which by definition is the piecewise constant interpolation

of the functions Jn. We will also require piecewise linear interpolations of Jn which we will
denote by J̃N . Along with that we also define the approximate ALE velocity wN to be
the piecewise constant interpolation of wn. Note that, by definition, wN solves (10) with
boundary data v∗

N .
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Using this notation, we combine the two subproblems (57) and (58) and then write the
weak formulation satisfied by the approximate solutions in monolithic form as follows:

−
ˆ T

0

ˆ
O
(τ∆tJN)∂tũN · qN −

ˆ T

0

ˆ
Γ

∂tṽN ·ψN =
1

2

ˆ T

0

ˆ
O
∂tJ̃NuN · qN

− 1

2

ˆ T

0

ˆ
O
(τ∆tJN)((τ∆tuN −wN) · ∇τ∆tηNuN · qN − (τ∆tuN −wN) · ∇τ∆tηNqN · uN)

− 2ν

ˆ T

0

ˆ
O
(τ∆tJN)D

τ∆tηN (uN) ·Dτ∆tηN (qN)−
ˆ T

0

ˆ
Γ

∆ηN ·∆ψN − 1

N

ˆ T

0

ˆ
Γ

∇3ηN · ∇3ψN

+ γ

ˆ T

0

ˆ
Γ

Λ1+svN · Λ1+sψN ,

(63)

for any (qN ,ψN) where qN(t) ∈ V
ηN
F (t) and ψN(t) ∈ H3(Γ) satisfy qN |Γ = ψN . Moreover,

we have

∇τ∆tηN · uN = 0, uN |Γ = vN

uN(0, ·) = u0, ηN(0, ·) = η0, vN(0, ·) = v0.

In the subsequent sections we will show that these sequences are bounded independently
of N in certain appropriate spaces which will allow us to extract subsequences converging
in weak and strong topologies of appropriate subspaces of the energy space. Using these
convergence results we aim to pass N → ∞ in (63).

4.3. Uniform estimates. In this section we will obtain the estimates, uniform in N , for
the approximate solutions defined in Section 4.2.

Theorem 4.2. Assume, for some fixed α > 0, that infO Jn > α for every 0 ≤ n ≤ N . Then
there exists a constant C > 0, independent of N and ε, such that

(1) En+1 ≤ C,En+ 1
2 ≤ C, for every n = 0, 1, .., N .

(2)
∑N−1

n=0 Dn ≤ C.

(3)
∑N−1

n=0

(
∥vn+ 1

2 − vn∥2L2(Γ) + ∥ηn+ 1
2 − ηn∥2H2(Γ) +

1
N
∥ηn+ 1

2 − ηn∥2H3(Γ)

)
≤ C.

(4)
∑N−1

n=0

(´
O Jn (|un+1 − un|2) + ∥vn+1 − vn+ 1

2∥2L2(Γ)

)
≤ C,

where the discrete energy En
N and dissipation Dn

N are defined in (56).

Proof. For a fixed N ∈ N, we add the energy estimates for the two subproblems (59) and
(60), sum over m ≥ 1, summing 0 ≤ n ≤ m− 1 and then take supremum over 1 ≤ m ≤ N .
This gives us

sup
1≤m≤N

Em
N +

N−1∑
n=0

Dn
N +

N−1∑
n=0

Cn
N ≤ E0,(64)

where,

Cn
N := ∥vn+ 1

2 − vn∥2L2(Γ) + ∥ηn+ 1
2 − ηn∥2L2(Γ) +

ˆ
O
Jn
(
|un+1 − un|2

)
+ ∥vn+1 − vn+ 1

2∥2L2(Γ).

□
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Next, we obtain uniform bounds for the approximate structure displacements and fluid
velocity.

Theorem 4.3. There exists T0 > 0 such that for any 0 < δ < s,

(1) The sequences {ηN}, {η̃N} are bounded, independently of N , in L∞(0, T0;H
2+δ(Γ)).

(2) The sequence {AηN
} is bounded, independently of N in L∞(0, T0;C

1,δ(Ō)) and for
some α > 0, the sequence of approximate Jacobians satisfies infO×(0,T ) JηN

> α, for
all N .

(3) The sequence {uN} is bounded, independently of N , in L2(0, T0;H
1(O))∩L∞(0, T0;L

2(O)).

Proof. We begin by observing that since η̃N and ηN belong to L∞(0, T ;H3(Γ)), until some
time, depending on N , the condition infO×(0,T ) JN > α must be satisfied. We define Tmax

N

to be maximal interval on which this lower bound for the approximate Jacobian exists and
hence the approximate solutions (uN , η̃N) are defined, i.e. Tmax

N is a maximal time-interval
such that assumptions of Theorem 4.1 hold.

First, we prove Statement (1). The proof of Statement (1) will rely heavily on the results of
Theorem 1. We first find uniform bounds for the structure displacement until time Tmax

N :=
nmax
N ( T

N
) > 0, for some nmax

N ∈ N dependent on N . For this purpose we reproduce the
construction of the test functions and other important details from Theorem 1 for the semi-
discrete case. We take

qN = −J−1
ηN

∇AηN
φN , ψN = −(∆κηN − cNξN),(65)

where φN is the solution of (25) with boundary data φ|Γ = JηN
(∇AηN

)−1|Γ (∆κηN − cNξN),
where

cN =

ˆ
Γ

∇ηN ×∆κηN ,(66)

and ξN is a smooth function satisfying
´
Γ
∇ηN × ξN = 1 for every t ∈ [0, T ].

We use this test pair (qN ,ψN), defined in (65), in the weak formulation (63) on the time
interval (0, Tmax

N ) and follow, with some modifications, the steps presented in the proof of
Theorem 1.

Observe that, vN is not equal to the structure velocity ∂tη̃N . Due to this mismatch caused

by time-discretization and splitting, the term
´ Tmax

N

0

´
Γ
Λ1+svN · Λ1+sψN , appearing in (63)

requires explanation. To that end, we write

γ

ˆ Tmax
N

0

ˆ
Γ

Λ1+svN · Λ1+sψN = γ

ˆ Tmax
N

0

ˆ
Γ

Λ1+s∂tη̃N · Λ1+s+2κη̃N

+ γ

ˆ Tmax
N

0

ˆ
Γ

Λ1+s(vN − v∗
N) · Λ1+sψN + γ

ˆ Tmax
N

0

ˆ
Γ

Λ1+sv∗
N · Λ1+s+2κ(ηN − η̃N).

(67)

Observe that the first term on the right-hand side produces the desired L∞(0, Tmax
N ;H2+δ(Γ))-

norm of η̃N in Statement (1). We will now show that the remaining two terms are bounded.
Thanks to integration-by-parts and the bounds on numerical dissipation obtained in Theorem
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4.2, we obtain

|γ
ˆ Tmax

N

0

ˆ
Γ

Λ1+s(vN − v∗
N) · Λ1+sψN | = |γ

ˆ Tmax
N

0

ˆ
Γ

(vN − v∗
N) · Λ2+2sψN |

≤ ∥vN − v∗
N∥L2(0,T ;L2(Γ))∥ηN∥L2(0,T ;H3(Γ))

≤

(∆t)

nmax
N −1∑
n=0

∥vn+ 1
2 − vn∥2L2(Γ)

 1
2

∥ηN∥L2(0,T ;H3(Γ)).

Similarly, to bound the second term on the right hand side of (67), we first note, using
Theorem 4.2 (3), that

ˆ Tmax
N

0

∥ηN − η̃N∥2H3(Γ)dt =

nmax
N −1∑
n=0

ˆ tn+1

tn

1

∆t
∥(t− tn)ηn+1 + (tn+1 − t−∆t)ηn∥2H3(Γ)dt

=

nmax
N −1∑
n=0

∥ηn+1 − ηn∥2H3(Γ)

ˆ tn+1

tn

(
t− tn

∆t

)2

dt

≤ CT

N
·N = CT.

This gives us,

|γ
ˆ Tmax

N

0

ˆ
Γ

Λ1+sv∗
N · Λ1+s+2κ(ηN − η̃N)| ≤ ∥v∗

N∥L2(0,Tmax
N ;H1+s(Γ))∥ηN − η̃N∥L2(0,Tmax

N ;H3(Γ))

≤ C.

The rest of the terms in the formulation (63) with the test function (65) follow the bounds
obtained in the proof of Theorem 1. Hence, the proof leading up to (43), gives us that

∥η̃N∥2L∞(0,Tmax
N ;H2+δ(Γ)) + ∥ηN∥2L2(0,Tmax

N ;H3−(s−δ)(Γ)) ≤ K2 + ∥η0∥2H2+δ(Γ),(68)

where K2 depends on ∥AηN
∥L∞(0,Tmax

N ;W1,∞(O)) and infO×(0,Tmax
N ) JηN

. Now we use the conti-
nuity argument to get rid of this dependence of K2 on the LHS norms by possibly reducing
the length of the time interval.

Let C0 > 0 and α > 0 be such that ∥Aη0
∥W1,∞(O) < 2C0 and infO J0 > α. We hypothesize

that

∥Aη̃N
∥L∞(0,T ;W1,∞(O)) ≤ 2C0 and inf

O×(0,T )
Jη̃N

> α.(69)

Now we choose T0 such that expression on the right hand side of (45) is smaller then C0,
and the expression on the RHS of (46) greater then 2α. We define,

TN = min{T0, T
max
N }.

Then, thanks to the Sobolev embeddings used in (45), we conclude that

∥Aη̃N
∥L∞(0,TN ;W1,∞(O)) ≤ C0 and inf

O×(0,TN )
Jη̃N

> 2α.(70)

Now, owing to the fact that by construction η̃N and thus Aη̃N
are continuous in time, we

can show that the conditions (a)-(d) of the Bootstrap principle [29, Propostion 1.21] are
satisfied. Hence we have proven that, for any 0 < δ < s, the sequence {η̃N} is bounded,
independently of N , in L∞(0, TN ;H

2+δ(Γ)).
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To finish the proof of Statement (1) in Theorem 4.3, we show that there exists N0 such
that

TN = T0 for all N ≥ N0.(71)

We prove (71) by contradiction. Assume that (71) is not true. Recall that, by (70) we have
that infO Jη̃N

(t) > 2α for every t ∈ [0, Tmax
N ] where Tmax

N = nmax
N ∆t. However, then for small

enough ∆t we can prolong the approximate solution, i.e. we can obtain Jnmax
N +1 > α which

contradicts maximality of Tmax
N .

Hence we have now shown that, for any 0 < δ < s the sequence {η̃N} is bounded,
independently of N , in L∞(0, T0;H

2+δ(Γ)).
The rest of the statements follow thanks to (13) and Lemma 3.1. □

Thanks to Theorems 4.2 and 4.3, we can immediately conclude that there exist η ∈
C(0, T ;H2+δ(Γ))∩H1(0, T ;H1+s(Γ)) for some 0 < δ < s, u ∈ L∞(0, T ;L2(O))∩L2(0, T ;H1(O))
and v ∈ L∞(0, T ;L2(Γ)) ∩ L2(0, T ;H1+s(Γ)) such that the following weak and weak∗ con-
vergence results hold, up to a subsequence, as N → ∞:

(1) ηN ⇀ η weakly in L∞(0, T0;H
2+δ(Γ)) for any 0 < δ < s.

(2) η̃N ⇀ η weakly in C(0, T0;H
2+δ(Γ)) for any 0 < δ < s.

(3) uN ⇀ u weakly in L2(0, T0;H
1(O)) and weakly∗ in L∞(0, T0;L

2(O)).
(4) vN ⇀ v weakly in L2(0, T0;H

1+s(Γ)) and weakly∗ in L∞(0, T0;L
2(Γ)).

(5) v∗
N ⇀ v weakly∗ in L∞(0, T0;L

2(Γ)).

Furthermore,
∂tη = v a.e. in O × (0, T ).

We now seek to upgrade these results to strong convergence results to be able to pass to the
limit in our nonlinear problem. In particular, due to the geometric nonlinearity introduced
in the fluid equations via the ALE maps associated with the motion of the fluid domain and
its boundary, we will require stronger convergence result for the structure displacements to
be able to pass N → ∞ in the approximate weak formulation. Thus, we start with the
following result on strong convergence of structure displacements.

Proposition 4.4. There exists a subsequence {ηN} of approximate structure displacements
such that

ηN → η strongly in L∞(0, T0;H
2+δ(Γ)) for any 0 ≤ δ < s.(72)

Proof. We begin by recalling the Aubin-Lions compactness lemma which states that the
following embedding is compact

L∞(0, T ;H2+ε(Γ)) ∩W 1,∞(0, T ;L2(Γ)) ⊂⊂ C([0, T ];H2+δ(Γ)), for any 0 ≤ δ < ε.

Due to the uniform boundedness of η̃N in L∞(0, T0;H
2+ε(Γ)), for appropriately small ε > 0

(see Theorem 4.2 (1)), and the uniform boundedness of v∗
N = ∂tη̃N in L∞(0, T0;L

2(Γ)), the
compact embedding above implies that the sequence

η̃N → η strongly in C([0, T0];H
2+δ(Γ)), for any 0 ≤ δ < s.(73)

Then, by comparing the definitions (61) and (62) we conclude that (72) holds for the se-
quences {ηN} and {τ∆tηN}. □

The consequences of the strong convergence (72) in regards to approximate ALE maps
are summarized in the following Proposition.
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Proposition 4.5. The ALE maps, defined by (10), satisfy the following strong convergence
properties:

AηN
→ Aη in L∞(0, T0;W

2, 3
1−δ (O))(O)),(74)

∇AηN
→ ∇Aη in L∞(0, T0;C(O)),(75)

(∇AηN
)−1 → (∇Aη)

−1 in L∞(0, T0;C(O))(76)

JN → Jη = det∇Aη, in L∞(0, T0;C(O)).(77)

Furthermore, let wη = ∂tAη be the solution of (10) with respect to the boundary data v.
Then:

wN → wη in L2(0, T0;H
3
2 (O)),(78)

∂tJ̃N → ∂tJη = Jη(∇η ·wη) in L2(0, T ;L3(O)).(79)

Proof. First observe that due to the linearity of (10), the bounds (14) and Proposition 4.4,
we have the following estimate, which implies strong convergence (74):

∥AηN
−Aη∥

L∞(0,T0;W
2, 3

1−δ (O))
≤ C∥ηN − η∥L∞(0,T0;H2+δ(O)) → 0,(80)

where Aη solves (10) with respect to the boundary data η.
Estimate (80), along with Proposition 4.4, imply the strong convergence results (75) -

(77), as well as (78).
To prove (79) we recall that for two matrices A and B, the derivative of the determinant of

A acting on matrix B, denoted by D(det)(A)B, is given by D(det)(A)B = det(A)tr(BA−1).
Hence, by applying the mean value theorem to det(∇Aηn) − det(∇Aηn+j) we obtain, for
some β ∈ [0, 1], that∣∣∣∣Jn+1 − Jn

∆t

∣∣∣∣ = ∣∣∣∣det(∇An,β)∇n,β ·
(
Aηn+1 −Aηn

∆t

)∣∣∣∣ ,(81)

where ∇n,β = ∇ηn
+β(∇ηn+1 −∇ηn

) and ∇An,β = ∇Aηn +β(∇Aηn+1 −∇Aηn). The details
of these calculations can be found in [25] (cf. (73)). Thus, (74)-(78) give us that

∂tJ̃N → ∂tJη = Jη(∇η ·wη), in L2(0, T ;L3(O)).

This completes the proof Proposition 4.5. □

Remark 7. We note that since η ∈ L∞(0, T0;H
2+δ(Γ)), we have that Aη ∈ L∞(0, T0;C

1,δ(O)).
Hence, on some time interval, still denoted by (0, T0), Aη(t) is a diffeomorphism from O to
Oη(t) for every t ∈ (0, T0). Recall, from Remark 2.1, that this is necessary to ensure the
equivalence of Definitions 1 and 2 on (0, T0).

Next, we will prove strong convergence of the fluid and structure velocities. First, we
obtain the following uniform bounds for the fluid and structure velocities in the Nikoski
space N

1
8
,2(0, T0;L

2(O)× L2(Γ)). See (17) to recall the definition of Nikolski spaces.

Lemma 4.6. The sequence of approximate solutions (uN ,vN) is bounded uniformly in the

Nikolski space N
1
8
,2(0, T0;L

2(O)× L2(Γ)).



3D FSI WITH VECTOR STRUCTURE DISPLACEMENTS 33

Proof. The proof of this Lemma relies on the steps in the proof of Theorem 2. Namely, our
aim is to prove that for any h > 0
(82)ˆ T0

h

∥τhuN−uN∥2L2(O)+∥τhvN−vN∥2L2(Γ) = (∆t)
N∑

n=j

∥un−un−j∥2L2(O)+∥vn−vn−j∥2L2(Γ) ≤ Ch
1
8 ,

where the constant C > 0 is independent of h and N = T0

∆t
. To prove this estimate we

would like to use the monolithic approximate weak formulation (63), and replace the test
functions with the appropriate solutions. However, we have to be careful since uN ,vN are
not the solutions of the monolithic approximate weak formulation (63), as they satisfy the
corresponding subproblems obtained using the Lie splitting strategy.

To get around this difficulty, we present here the construction of a suitable pair of test
functions for the approximate sub-problems (57) and (58), that are expressed in terms of
modifications of uN ,vN , which can be used to derive estimate (82). Their construction will
mimic the construction of their continuous-in-time counterparts (49) and (50), as in the
proof of Theorem 2.

Let h = j∆t + l for some 0 ≤ j ≤ N and l < ∆t. For simplicity of our presentation we
will take l = 0 and refer the interested reader to [26] (see (3.8)-(3.10)) for the treatment of
the case l > 0.

To construct the appropriate test functions we fix ∆t, i.e., we fix N , and consider n and
k such that 0 ≤ n ̸= k ≤ N . The plan is to construct uk and vk (we are dropping the
subscript N here) in a way that they can be used as test functions for the equations for un

and vn, for some 0 ≤ n ̸= k ≤ N . Due to the fact that we are working on moving domains,
this is not trivial since these two solutions are defined on different fluid domains.

We start by defining a discrete version of the function uM(s, t) in (49) as follows:

uk,n
M := (Jn)−1∇Aηn

(
Jk(∇Aηk)−1(uk −wk)

)
+wk

M +
(
bk − bk,nM

)
ξ0χ

− (Jn)−1∇AηnB
(
div
(
(Jk(∇Aηk)−1wk)− Jn(∇Aηn)−1wk

M

)
−
(
bk − bk,nM

)
div((Jn)−1∇Aηnξ0χ)

)
,

where wk is the harmonic extension of vk in O, such that wk = 0 on ∂O \ Γ. Similarly, for
any 0 ≤ k ≤ N , we use the notation vk

M = PMvk and denote by wk
M the harmonic extension

of vk
M in O, such that wk

M = 0 on ∂O \ Γ. We recall that B is the Bogovski operator on
the fixed domain O. We also define the discreet correction terms, bk =

´
Γ
(∇ηk × vk) and

bk,nM =
´
Γ
(∇ηn × vk

M) and choose a smooth function ξ0 so that it satisfies
´
Γ
(∇ηn × ξ0) = 1

for any n.
Similarly, the following function is the time discretized version of vM(s, t) in (50):

vk,n
M := vk

M −
(
bk − bk,nM

)
ξ0.

Then, for any n ≤ N we define the following pair of test functions written in terms of uk,n
M

and vk,n
M (compare with (49) and (50)),

(qn,ψn) =

(
(∆t)

n∑
k=n−j+1

uk,n
M , (∆t)

n∑
k=n−j+1

vk,n
M

)
.(83)
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Now we use (qn,ψn) as test functions in the two subproblems (57)3 and (58)2 respectively

and then apply
∑N

n=0 which yields (cf. (55)),

−
N∑

n=0

(ˆ
O

(
(Jn+1)un+1 − (Jn)un

)(
∆t

n∑
k=n−j+1

uk,n
M

)
+

ˆ
Γ

(vn+1 − vn)

(
∆t

n∑
k=n−j+1

vk,n
M

))

=
−1

2

N∑
n=0

ˆ
O

(
Jn+1 − Jn

)
un+1 ·

(
∆t

n∑
k=n−j+1

uk,n
M

)
+ (∆t)

N∑
n=0

bηn(un+1,wn,

(
∆t

n∑
k=n−j+1

uk,n
M

)
)

+ 2ν(∆t)
N∑

n=0

ˆ
O
(Jn)Dηn(un+1) ·Dηn

(
∆t

n∑
k=n−j+1

uk,n
M

)

+ (∆t)
N∑

n=0

ˆ
Γ

∆ηn+ 1
2 ·

(
∆t

n∑
k=n−j+1

∆vk,n
M

)
+

1

N
(∆t)

N∑
n=0

ˆ
Γ

∇3ηn+ 1
2 ·

(
∆t

n∑
k=n−j+1

∇3vk,n
M

)

+ γ

ˆ
Γ

Λ1+svn+ 1
2 · Λ1+s

(
∆t

n∑
k=n−j+1

vk,n
M

)
= I1 + ...+ I5.

After using summation by parts formula, the two terms on the left hand side of the equation

above produce the desired terms
´ T0

h
∥τhuN − uN∥2L2(O) +

´ T0

h
∥τhvN − vN∥2L2(Γ). The rest

of the terms including the six terms I1,...,5 on the right-hand side of the equation above are
treated identically as in the proof of Theorem 2 (see the bounds obtained for the terms I1,...,6
following (55)). This completes the proof of Lemma 4.6. □

To utilize this result and obtain strong convergence, up to a subsequence, of the approxi-
mate solutions, we intend to use the following variant of the Aubin-Lions theorem (see [32]
and [28]).

Lemma 4.7. Assume that Y0 ⊂ Y are Banach spaces such that Y0 and Y are reflexive with
compact embedding of Y0 in Y. Then for any m > 0, the embedding

L2(0, T ;Y0) ∩Nm,2(0, T ;Y) ↪→ L2(0, T ;Y)

is compact.

Hence, combining Lemmas 4.6 and 4.7 with Y0 = H1(O)×H1+s(Γ) and Y = L2(O)×L2(Γ),
we see that the sequence {(uN ,vN)} is relatively compact in L2(0, T0;L

2(O)×L2(Γ)). There-
fore, we obtained the following strong convergence result for fluid and structure velocities:

Proposition 4.8. The sequence

{(uN ,vN)} → (u,v) strongly in L2(0, T0;L
2(O)× L2(Γ)).

This completes the convergence results for the approximate solutions that are necessary
to pass to the limit as N → ∞ in the monolithic weak formulation of approximate solutions
and show that the limits satisfy the weak formulation of the continuous problem. However,
as with all FSI problems defined on moving domains, for which the continuous solution is
approximated by a sequence of time-discretized approximate solutions, before we can pass to
the limit we need to take care of the corresponding test functions. Namely, the test functions
in the approximate weak formulations given in terms of the fixed domain O, depend on N
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because they satisfy the transformed divergence-free condition, where the gradient operator
depends on N via the approximate interface displacement ηN . Therefore, before we can pass
to the limit as N → ∞ (or equivalently ∆t → 0) in (63) we need to construct appropriate
test functions that satisfy certain strong convergence properties, and are dense in the space
of approximate and continuous test functions. This is the subject of the next section.

4.4. Construction of test functions. In this section, we will construct a pair of test func-
tions for the approximate weak formulation (63) and the corresponding limiting equations
that have certain desired properties to pass to the limit as N → ∞. We begin by considering
a test pair (q,ψ) for some q ∈ L∞(0, T ;H1(O))∩H1(0, T ;L2(O)) such that ∇η ·q = 0, and
ψ ∈ L∞(0, T ;H2(Γ)) ∩H1(0, T ;H1+s(Γ)) that satisfy the kinematic coupling condition i.e.
q|Γ = ψ. Now, we will build a pair of functions (qN ,ψN) that approximates (q,ψ) in an
appropriate sense and is also a valid test function for the approximate system (63).

We define the approximate fluid test function qN , with the aid of the Piola transformation
as done previously in the proof of Theorem 2 in Section 3.2:

qN = J−1
ηN

∇AηN
Jη∇A−1

η (q−ψχ) +ψχ− ληN − λη

λN
0

(ξ0χ)(84)

+ J−1
ηN

B
(
div

(
(Jη(∇Aη)

−1 − JηN
(∇AηN

)−1)ψχ− ληN − λη

λN
0

JηN
(∇AηN

)−1ξ0χ

))
,

and for the structure test function we let,

ψN = ψ − ληN − λη

λN
0

ξ0.(85)

For the correction terms, we pick an appropriate ξ0 ∈ C∞
0 (Γ) such that λN

0 defined below is
not 0 for any N ∈ N,

λN
0 (t) = −

ˆ
Γ

(id+ ηN(t))×∇ξ0.

We also define the following corrector functions that only depend on time,

ληN (t) = −
ˆ
Γ

(id+ ηN(t))×∇ψ(t), λη(t) = −
ˆ
Γ

(id+ η(t))×∇ψ(t).

As earlier, χ(r) is a smooth function on O such that χ(1) = 1 and χ(0) = 0. Observe that
the properties of the Piola transformation (see e.g. Theorem 1.7 in [6]), imply that

∇ηN · qN = JηJ
−1
ηN

∇η · q = 0, and qN |Γ · nN = ψN · nN .

Additionally, thanks to (14) and (74) we obtain that

∥qN − q∥L∞(0,T ;H1(O))

≤ ∥AηN
−Aη∥

L∞(0,T ;W
2, 3

1−δ (O))

(
∥q∥L∞(0,T ;H1(O)) + ∥ψ∥L∞(0,T ;H2(Γ))

)
+ ∥ληN − λη∥L∞(0,T ) → 0.(86)

Similarly, since λη and ληN are constant in space, we readily obtain that

ψN → ψ in L∞(0, T ;H2(Γ̄)).(87)

Thus, we have shown the following result:



36 S. ČANIĆ, B. MUHA, K. TAWRI

Proposition 4.9. The approximate fluid velocity test functions qN constructed in (84), and
the approximate structure velocity test functions ψN constructed in (85), satisfy the following
properties:

• ∇ηN · qN = 0
• qN |Γ · nN = ψN · nN .

Furthermore, the following strong convergence results hold:

qN → q in L∞(0, T ;H1(O)) and ψN → ψ in L∞(0, T ;H2(Γ̄)),

where (q,ψ) are the test functions associated with the continuous problem.

4.5. Passing to the limit. We are now in a position to pass to the limit in the semi-discrete
formulation (63), as N → ∞. We use the test functions constructed above in Proposition 4.9
as the test functions in the semi-discrete formulation (63) (these test functions are dense in
the space of all test functions for the approximate problems). Then, use the weak and strong
convergence results discussed above for approximate solutions, and pass to the limit as N →
∞ in (63) to show that the limits of approximate subsequences satisfy the weak formulation
of the continuous problem stated in Definition 2. Due to Proposition 2.1, Definition 2 and
Definition 1 are equivalent, which completes the proof of Theorem 3.
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[14] C. Grandmont and L. Sabbagh. Existence and uniqueness of strong solutions to a bi-dimensional fluid-
structure interaction system. 2024. 2

[15] P. Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint of the 1985
original [MR0775683], With a foreword by Susanne C. Brenner. 9

[16] B. Kaltenbacher, I. Kukavica, I. Lasiecka, R. Triggiani, A. Tuffaha, and J. Webster. Mathematical theory
of evolutionary fluid-flow structure interactions. Springer, 2018. 1

[17] M. Kampschulte, S. Schwarzacher, and G. Sperone. Unrestricted deformations of thin elastic structures
interacting with fluids. J. Math. Pures Appl. (9), 173:96–148, 2023. 2

[18] I. Kukavica and A. Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete
Contin. Dyn. Syst., 32(4):1355–1389, 2012. 2
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