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THREE-DIMENSIONAL SHEAR DRIVEN TURBULENCE WITH NOISE AT

THE BOUNDARY

WAI-TONG LOUIS FAN, MICHAEL JOLLY, AND ALI PAKZAD

Abstract. We consider the incompressible 3D Navier-Stokes equations subject to a shear induced

by noisy movement of part of the boundary. The effect of the noise is quantified by upper bounds

on the first two moments of the dissipation rate. The expected value estimate is consistent with

the Kolmogorov dissipation law, recovering an upper bound as in [15] for the deterministic case.

The movement of the boundary is given by an Ornstein–Uhlenbeck process; a potential for over-

dissipation is noted if the Ornstein–Uhlenbeck process were replaced by the Wiener process.

1. INTRODUCTION

Noise is added to turbulence models for a variety of reasons, both practical and theoretical. For

example, the onset of turbulence is often related to the randomness of background movement [35].

In any turbulent flow there are unavoidably perturbations in boundary conditions and material

properties; see [40, Chapter 3]. The addition of noise in a physical model can be interpreted as

a perturbation from the model. There is considerable evidence supporting the stabilization of

solutions by noise (see, e.g., [1,10,22,29]). However, the effect of noise in turbulent flow is far from

completely understood.

This paper concerns the Kolmogorov dissipation law associated with the incompressible Navier-

Stokes equations (NSE) in a 3-dimensional box D = (0, L)2 × (0, h) subject to a shear induced by

noisy movement of one wall. Specifically, we consider the following differential equation,

du+ (u · ∇u−ν∆u+∇p) dt = 0,

∇ · u = 0,
(1.1)

with L-periodic boundary condition in the x1 and x2 directions and a random boundary condition

given by the following: for all time t ∈ R+ and (x1, x2) ∈ (0, L)2,

u(x1, x2, 0, t) = (Xt, 0, 0)
⊤ and u(x1, x2, h, t) = (0, 0, 0)⊤ .(1.2)

In the above, ν > 0 is a fixed real parameter representing the viscosity, and X = (Xt)t∈R+
is a

given continuous-time, real-valued stochastic process. The stochastic processes u and p represent

respectively the velocity field and the pressure.
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The Kolmogorov dissipation law is tied to a phenomenon in turbulence called the energy cascade,

which can be explained in 3 main steps. 1− In the absence of a body force, the kinetic energy is

introduced into the large scales of the fluid between the parallel plates by the effects of the moving

plate. This energy is called energy input. 2− The large eddies break up into smaller eddies through

vortex stretching over an intermediate range, where the energy is transferred to smaller scales and

the energy dissipation due to the viscous force is negligible. 3− At small enough scales (expected

to be ∼ Re−3/4, where Re is the Reynolds number defined in (1.3)) dissipation dominates and the

energy in those smallest scales decays to zero exponentially fast.

Based on the above description the dissipation is effective at the end of a sequence of processes.

Therefore, the rate of dissipation, which measures the amount of energy lost by the viscous force,

is determined by the first process in the sequence, which is the energy input. The persistent force

driving the shear flow is the motion of the bottom wall {(x1, x2, 0) : (x1, x2) ∈ [0, L]2}. The time

averaged energy dissipation rate must balance the drag exerted by the walls on the fluid. In terms

of the characteristic speed U , the large eddies have energy of order U2 and time scale τ = h/U , so

the rate of energy input can be scaled as U2/τ = U3/h. This suggests the Kolmogorov dissipation

law for time-averaged energy dissipation rate ε (Kolmogorov 1941);

ε ∼ U3

h
.

Here a ∼ b means a . b and b . a; a . b means a ≤ c b for a nondimensional universal constant c.

The energy dissipation rate has been widely studied in the literature in the deterministic case

[8, 13, 17, 19, 26, 31, 32, 37–39]. Doering and Constantin proved in [15] a rigorous asymptotic bound

directly from the Navier-Stokes equations. Their bound is of the form

ε .
U3

h
, as Re → ∞, where Re =

Uh

ν
,(1.3)

similar estimations have been proven by Kerswell [28], Marchiano [34], and Wang [47] in more

generality.

In this paper we choose Xt to be an Ornstein–Uhlenbeck process (OU process) satisfying (2.1).

We derive an upper bound on the expected value of the energy dissipation rate as well as its second

moment in terms of characteristics of the randomly moving bottom wall. Our estimate recovers

(1.3) in the limit as the variance σ2 of the noise tends to 0. The key to the analysis is the choice of

a stochastic background flow and the treatment of a stochastic integral (with respect to the Wiener

process) as a local martingale.

Since the work of Bensoussan and Temam [3] in 1973, there has been substantial advance in

understanding the stochastic Navier-Stokes equations, see for example [2, 5, 7, 35, 36, 44] and the

references therein. Recently in [12], the exact dissipation rate is obtained for the stochastically

forced Navier-Stokes equations under an assumption of energy balance. In all those works the

equation always contains noise as a forcing term. Other than the analysis of symmetries of a

passive scalar advected by a shear flow in which a boundary moves as a stochastic process in [9],
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to the best of our knowledge, there is no other work concerning the equations of the motion with

stochastic boundary conditions.

Organization of this paper. In section 2, we will introduce the necessary notation and prelim-

inary results needed in the proceeding sections. In section 3, we will state the main result of this

work. We will set up an almost sure bound starting from the energy equation in section 4. From

there, we will derive an upper bound on the mean value and variance of the energy dissipation

respectively in sections 5 and 6. The concluding Section 7 contains some open problems in this

direction.

2. Definitions and Notations

In this paper, we choose Xt to be an Ornstein–Uhlenbeck process (OU process), which is a

diffusion process solving the Itô stochastic differential equation

(2.1) dXt = θ(U − Xt)dt+ σdWt,

where W = (Wt)t∈R+
is a standard Brownian motion (a.k.a. the Wiener process), and θ > 0 and

σ > 0 are parameters. A strong solution to (2.1) is given by

Xt = X0 e
−θt + U (1− e−θt) + σ

∫ t

0
e−θ(t−s) dWs.

It is well known that Xt has stationary distribution given by the normal distribution N (U, σ
2

2θ ) with

mean U and variance σ2

2θ . If the initial distribution satisfies X0 ∼ N (U, σ
2

2θ ), then Xt ∼ N(U, σ
2

2θ ) for

all t ≥ 0 and we say X is a stationary OU process.

Intuitively, the OU process is a Wiener process plus a tendency to move towards a location U ,

where the tendency is greater when the process is further away from that location. In (2.1), θ is the

decay-rate which measures how strongly the system reacts to perturbations, and σ2 is the variation

or the size of the noise. We will need the following basic properties of the stationary OU process

(for a proof and additional properties see [18]).

Proposition 2.1. Let Xt be a stationary Ornstein–Uhlenbeck process satisfying (2.1). The following

hold for all t ≥ 0.

(i) Xt ∼ N(U, σ
2

2θ ) ,

(ii) [X]t = σ2 t, where [X]t is the quadratic variation of X on [0, t].

Throughout this manuscript, the L2(D) norm and inner product will be denoted by ‖ · ‖ and (·, ·)
respectively. For the sake of boundary conditions, we consider

H = {v ∈ [L2(D)]3 : ∇ · v = 0, v(x1, x2, 0) = v(x1, x2, h) = 0, v periodic in x1, x2},
V = {v ∈ [H1(D)]3 : ∇ · v = 0, v(x1, x2, 0) = v(x1, x2, h) = 0, v periodic in x1, x2},

C∞
div = {v ∈ [C∞(D)]3 : ∇ · v = 0, v(x1, x2, 0) = v(x1, x2, h) = 0, v periodic in x1, x2}.
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Figure 1. The graph of x3 7→ φ(x3,Xt(ω)), where δt = δ(Xt(ω)) is the boundary
layer thickness.

Stochastic Background Flow. The difficulty in the analysis of the shear flow (1.2) is due to the

effect of the random inhomogeneous boundary condition. We overcome this difficulty by construct-

ing a carefully chosen stochastic background flow. This construction is based on the Hopf extension

[25].

Our key idea here is to choose the boundary layer thickness δt in the background flow to be

random and time-dependent, namely,

(2.2) δt = δ(Xt(ω)) =
A

|Xt(ω)|2 +B

where δ : R → (0,∞) is the function δ(z) = A
z2+B . We later choose A = νU and B = U2, so δt has

the dimension of length and δt ∈ (0, h) if Re = U h
ν > 1; see Lemma 4.3 for precise requirements.

We then let φ : [0, h] × R → R be the function

φ(a, z) =

(
1− a

δ(z)

)
z 1{0≤a≤δ(z)}.

By definition, we have (see Figure 1)

(2.3) φ(x3,Xt(ω)) =





(
1− x3

δt

)
Xt(ω) if 0 ≤ x3 ≤ δt

0 if δt ≤ x3 ≤ h
.

Finally, we define the stochastic background flow Φ = Φt(x1, x2, x3;ω) as

(2.4) Φt(x1, x2, x3;ω) :=
(
φ(x3,Xt(ω)), 0, 0

)
⊤

.

There can be other choices for the function δt, and our choice in (2.2) is motivated by the general

analysis in (4.19). The boundary layer is denoted by Dδ = (0, L)2 × (0, δt).

Martingale solutions. We follow the standard notion of martingale solutions for stochastic Naiver

Stokes equations such as Flandoli and Gatarek [21, Definition 3.1], and define a martingale solution

for our system (1.1)-(1.2). This notion is a probabilistically weak analogue of the Leray-Hopf weak

solution to the deterministic Navier–Stokes equations.
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Definition 2.1 (Martingale solution on compact intervals). Let T ∈ [0,∞). A martingale solu-

tion to (1.1)-(1.2) on [0, T ] consists of a stochastic basis
(
Ω, (Ft)t∈[0,T ], P

)
with a complete right-

continuous filtration (Ft)t∈[0,T ], a stationary OU process (Xt)t∈[0,T ] adapted to (Ft)t∈[0,T ], and with

mean U and variance σ2

2θ , and an Ft-progressively measurable stochastic process

u : [0, T ]× Ω → [L2(D)]3

such that

• u−Φ has sample paths in L2 ([0, T ]; V ) ∩ L∞ ([0, T ]; H) almost surely,

• for all t ∈ [0, T ] and all ϕ ∈ C∞
div, the following identity holds almost surely,

(2.5) (u(t), ϕ) + ν

∫ t

0
(∇u(s),∇ϕ) ds +

∫ t

0
(u(s) · ∇u(s), ϕ) ds = (u(0), ϕ),

• the following holds

(2.6) E

[
sup

s∈[0,T ]
‖u(s)‖2 +

∫ T

0
‖∇u(s)‖2 dt

]
< ∞.

Remark 2.2. The existence of a martingale solution under the current assumptions can be derived

by modifying a classical result of Flandoli and Gatarek [21] in the case when Xt = 0. As in the

deterministic case, the uniqueness of such solutions is an open problem.

Remark 2.3. Note that above solution is independent of the choice of Φ and depends only on the

value of Φ on the boundary; see for instance [6, Chapter 9].

Essentially, a global solution has a fixed stochastic basis over [0,∞) which, when restricted to

[0, T ], yields a solution as in Definition 2.1.

Definition 2.2 (Martingale solution). A martingale solution to (1.1)-(1.2) consists of a stochastic

basis
(
Ω, (Ft)t∈[0,∞), P

)
with a complete right-continuous filtration (Ft)t∈R+

, a stationary OU pro-

cess X = (Xt)t∈R+
with mean U and variance σ2

2θ , and an Ft-progressively measurable stochastic

process

u ∈ [0,∞) ×Ω → [L2(D)]3

such that
{(

Ω, (Ft)t∈[0,T ], P
)
, (Xt)t∈[0,T ], u

∣∣
[0,T ]×Ω

}
is a martingale solution to (1.1)-(1.2) on [0, T ]

for all T ∈ [0,∞).

Energy dissipation rate. In experiments, it is natural to take a long, but fixed time interval

[0, T ] and compute the time-average

(2.7) 〈ǫ〉T :=
1

|D|
1

T

∫ T

0
ν‖∇u(t, ·, ω)‖2L2 dt .

It is shown in [23] that the effect of T in finite-time averages of physical quantities in turbulence

theory, including the energy dissipation rate, can be controlled by parameters such as Re. In our
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setting, this finite-time average in (6) is a random variable whose mathematical expectation can be

approximated by taking an average over a number of samples in the experiments.

Definition 2.3. We take the time-averaged expected energy dissipation rate for a martingale solu-

tion u of (1.1)-(1.2) to be defined by

ε := lim sup
T→∞

E[〈ǫ〉T ] = lim sup
T→∞

E

[
1

|D|
1

T

∫ T

0
ν‖∇u(t, ·, ω)‖2L2 dt

]
.(2.8)

Our main result, Theorem 3.1 below, is an upper bound for ε in terms of the characteristics of the

noise added to the movement of the boundary. The variance V ar[〈ǫ〉T ] is bounded by the second

moment E[〈ǫ〉2T ]. In this work, we obtain an upper bound for the limsup of E[〈ǫ〉2T ]. Our method

can readily be generalized to give an upper bound for the p-th moment for all p ≥ 1; see Remark

6.1.

Remark 2.4. We note that by Fatou’s lemma

lim sup
T→∞

E[〈ǫ〉T ] ≤ E

[
lim sup
T→∞

〈ǫ〉T
]
.

Hence our upper bound on ε defined in (2.8) does not imply one when the order of the lim sup and

expectation are reversed.

3. Statement of the Results

Theorem 3.1. Suppose
{(

Ω, (Ft)t∈[0,∞), P
)
, X, u

}
is a martingale solution to (1.1)-(1.2), where

X is a stationary Ornstein–Uhlenbeck process (2.1). Assume that Re = U h
ν > 1 and that the initial

condition u(0) is such that E[‖u(0)‖2] < ∞. Then the energy dissipation rate (2.8) satisfies

ε = lim sup
T→∞

E[〈ǫ〉T ] ≤ 32
U3

h
+ 2

(
6

1

Re
+ 28

U

hθ
+ 12

1

Re2
h θ

U
+ 24

1

Re2
hσ2

U3
+ 6

σ2

hU θ2

)
σ2.(3.1)

Moreover, the second moment of 〈ǫ〉T satisfies

(3.2) lim sup
T→∞

E[〈ǫ〉2T ] .
U6

h2
+ σ2 P (σ)

where P (σ) = PU,ν,θ(σ) is an explicit polynomial in σ whose coefficients are explicit functions of

U, ν and θ.

In the above estimate on the mean of the dissipation rate (3.1), as the variance σ of the disturbance

from U tends to 0, we recover the upper bound in Kolmogorov’s dissipation law,

lim
σ→0

ε .
U3

h
,

which is also consistent with the rate proven for the Navier-Stokes equations in [15]. The constants

suppressed by the use of . in (3.2) is explicitly given in (6.13) for the second moment.
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Remark 3.2. Since U is the mean velocity of the bottom wall, Xt has the dimension of velocity.

Therefore, θ scales as 1
time , and σ has dimension velocity√

time
. Therefore, one can check that the results

in Theorem 3.1 are also dimensionally consistent.

4. An almost sure bound on the energy dissipation

In this section, we prove an almost sure upper bound for the energy dissipation. We will see that

δt in (2.2) is determined so as to absorb a term involving ‖∇v‖ in (4.19).

With δ(z) = A
z2+B

, we let φ(x3,Xt(ω)) = f(Xt(ω)) where f : R → R is the smooth function,

(4.1) f(z) = fx3
(z) =

(
1− x3

δ(z)

)
z , for x3 ∈ (0, δt) .

Itô’s rule asserts that P-a.s. we have

df(Xt) =f ′(Xt) dXt +
σ2

2
f ′′(Xt) dt

=f ′(Xt) [θ(U −Xt)dt+ σdWt] +
σ2

2
f ′′(Xt) dt

=Lf(Xt) dt + σf ′(Xt)dWt

(4.2)

for t ≥ 0, where we used the equation (2.1) of the OU process in the second equality, and

(4.3) Lf(z) = f ′(z) θ(U − z) +
σ2

2
f ′′(z).

We can extend L to a differential operator which is the infinitesimal generator of the OU process.

Before proceedung to the main analysis, we gather some basic calculations in Lemma 4.1 below.

First note that (4.1) implies that

f ′(z) = 1− x3
δ − zδ′

δ2

f ′′(z) =x3
zδ2δ′′ + 2δ2δ′ − 2zδ(δ′)2

δ4
.(4.4)

Lemma 4.1. Consider δ(z) = A
z2+B

and f(z) = fx3
(z) =

(
1− x3

δ(z)

)
z as above. Then,

(4.5) δ′(z) =
−2Az

(z2 +B)2
and δ′′(z) =

2A(3z2 −B)

(z2 +B)3
.

Hence from (4.4) we have

(4.6) f ′(z) = 1− x3
3z2 +B

A
and f ′′(z) = −x3

6z

A
.

A basic tool in the mathematical understanding of the dissipation rate is the energy inequality,

which is obtained formally by taking the scalar product of the equations by a solution. However

in the case of shear flow here, the viscosity term cannot be handled by integration by parts due

to the effect of the inhomogeneous boundary condition. The key idea is to consider u − Φ which
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satisfies homogeneous boundary conditions, where Φ is the stochastic, incompressible background

field (2.4), carrying the inhomogeneities of the problem. One can then proceed formally by taking

the scalar product of the equation (1.1) by u− Φ to obtain the following P-a.s. energy inequality,

(4.7)

∫ T

0
(du, u) + ν

∫ T

0
‖∇u‖2 dt ≤

∫ T

0
(du,Φ) +

∫ T

0
(u · ∇u,Φ) dt+ ν

∫ T

0
(∇u,∇Φ) dt.

We present the rest of the analysis based on v = u − Φ where v is a fluctuating incompressible

field which is unforced and hence of arbitrary amplitude. Making the substitution u = v + Φ in

(1.1), we find the stochastic process v satisfies,

dv + dΦ = −(v · ∇v + v · ∇Φ+Φ · ∇v +Φ · ∇Φ− ν∆v − ν∆Φ+∇p) dt,

∇ · v = 0,
(4.8)

in the weak sense. The boundary conditions for v are periodic in the x1 and x2 directions while in

the x3 direction,

v(x1, x2, 0, t) = v(x1, x2, h, t) = 0 .

From (4.7), the energy-type inequality for v is obtained as,
∫ T

0
(v, dv)︸ ︷︷ ︸

I

+(v, dΦ)︸ ︷︷ ︸
II

+ ν‖∇v‖2 dt ≤
∫ T

0

(
(v · ∇v, v)︸ ︷︷ ︸

III

+(v · ∇Φ, v)︸ ︷︷ ︸
IV

+(Φ · ∇v, v)︸ ︷︷ ︸
V

+ (Φ · ∇Φ, v)︸ ︷︷ ︸
VI

+ ν(∇v,∇Φ)︸ ︷︷ ︸
VII

)
dt.

(4.9)

We shall estimate each numbered term in (4.9).

Term I. Using (1.1) and (2.3)

dv = du− dΦ = −(u · ∇u− ν∆u+∇p) dt−
{ (

df(Xt), 0, 0
)
⊤

if 0 ≤ x3 ≤ δt

0 otherwise
.

By (4.2), the quadratic variation of f(Xt) is
∫ t
0 σ

2(f ′(Xs))
2ds. Hence by Itô’s product rule,

(4.10) v · dv =
1

2
d(v · v)− σ2

2
(f ′(Xt))

2 dt , for 0 ≤ x3 ≤ δt.

Recall that the boundary layer Dδ = (0, L)2 × (0, δt). Using Proposition 2.1 (ii) and (4.10)

together with a direct calculation, we have
∫

D
v · dv dx =

1

2
d‖v‖2 − σ2

2

∫

Dδ

(f ′(Xt))
2 dx dt.(4.11)
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Term II. From (4.2) it follows that
∫

D
v dΦ dx =

∫

Dδ

v1 df(Xt) dx

=

∫

Dδ

v1 Lf(Xt) dx dt + σ

∫

Dδ

v1f
′(Xt)dx dWt.

(4.12)

Term III. Using the incompressibility of v, along with integration by parts, we get

(v · ∇v, v) = 0.

Term IV. Since v1 vanishes on the bottom wall, we can write v1(x1, x2, x3) as
∫ x3

0
∂v1
∂ζ (x1, x2, ζ) dζ.

Applying the Cauchy-Schwarz inequality (twice), we first estimate as
∣∣∣∣
∫ L

0

∫ L

0
v1 v3dx1dx2

∣∣∣∣ =
∣∣∣∣
∫ L

0

∫ L

0

∫ x3

0

∂v1
∂ξ

(x1, x2, ξ) dξ

∫ x3

0

∂v3
∂η

(x1, x2, η) dη dx1dx2

∣∣∣∣

≤ x3‖
∂v1
∂x3

‖ ‖∂v3
∂x3

‖ .

Using this together with Young’s inequality, we have

|(v · ∇Φ, v)| =
∣∣∣∣
∫

Dδ

v1v3
∂φ

∂x3
dx

∣∣∣∣ ≤
∣∣∣∣
Xt

δt

∣∣∣∣
∣∣∣∣
∫ L

0

∫ L

0

∫ δt

0
v1v3 dx1dx2dx3

∣∣∣∣

=

∣∣∣∣
Xt

δt

∣∣∣∣
∣∣∣∣
∫ δt

0

[∫ L

0

∫ L

0
v1v3 dx1dx2

]
dx3

∣∣∣∣

≤
∣∣∣∣
Xt

δt

∣∣∣∣
∣∣∣∣
∫ δt

0

[
x3‖

∂v1
∂x3

‖ ‖∂v3
∂x3

‖
]
dx3

∣∣∣∣

=

∣∣∣∣
Xt

δt

∣∣∣∣
δ2t
2
‖∂v1
∂x3

‖ ‖∂v3
∂x3

‖

≤ δt
2
|Xt|

[
1

2
‖∂v1
∂x3

‖2 + 1

2
‖∂v3
∂x3

‖2
]

≤ δt
2
|Xt| ‖∇v‖2.

(4.13)

Term V. Using a pointwise calculation we have

Φ · ∇v = φ(x3,Xt)
∂v

∂x1
.

Therefore, using integration by parts and then the periodicity of v, one can show that,

(Φ · ∇v, v) =
1

2

∫

Dδ

φ(x3,Xt)
∂

∂x1
|v|2 dx

=
1

2

∫ δt

0
φ(x3,Xt)

∫ L

0

(∫ L

0

∂

∂x1
|v|2 dx1

)
dx2 dx3

= 0.

(4.14)
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Term VI. A pointwise calculation leads to Φ · ∇Φ = 0, hence,

(Φ · ∇Φ, v) = 0.

Term VII. Direct calculation shows that ∂φ(x3,z)
∂x3

= −z
δ(z) for 0 < x3 < δ(z). Hence

(4.15) ‖ ∂φ

∂x3
‖ =

L

δ
1/2
t

|Xt|.

Therefore using the Cauchy-Schwarz inequality and Young’s inequality, we find

|ν(∇v,∇Φ)| ≤ ν

∫

D

∣∣∣∣
∂φ

∂x3

∣∣∣∣
∣∣∣∣
∂v1
∂x3

∣∣∣∣ dx

≤ ν‖ ∂φ

∂x3
‖ ‖∂v1

∂x3
‖

≤ ν
L

δ
1/2
t

|Xt| ‖∇v‖

≤ ν

δt
L2|Xt|2 +

ν

4
‖∇v‖2.

(4.16)

Using the estimates for all the seven terms above in (4.9) yields,

1

2
d‖v‖2 + 3ν

4
‖∇v‖2 dt + σ

∫

Dδt

v1f
′(Xt)dx dWt

≤ σ2

2

∫

Dδ

(f ′(Xt))
2 dx dt+

∣∣∣∣
∫

Dδ

v1Lf(Xt) dx

∣∣∣∣ dt+
[
δt
2
|Xt| ‖∇v‖2 + νL2 |Xt|2

δt

]
dt,

(4.17)

where we recall that δt = δ(Xt), the function f(z) = fx3
(z) =

(
1− x3

δ(z)

)
z is defined in (4.1) and

therefore has derivatives given by (4.4).

The second term on the right hand side of (4.17) can be bounded from above by using the next

lemma, which is proved in the Appendix.

Lemma 4.2. Let G = (Gt)t∈R+
be a stochastic process defined on the probability space in the

martingale solution to (1.1)-(1.2). Then P-a.s., we have for all t ∈ R+,

∣∣∣∣
∫

Dδ

v1 Gt dx

∣∣∣∣ ≤ ‖∇v(t)‖ δt L
(∫ δt

0
|Gt|2 dx3

) 1

2

.

Applying Lemma 4.2 with Gt = Lf(Xt) and then using Young’s inequality, we have

(4.18)

∣∣∣∣
∫

Dδ

v1Lf(Xt) dx

∣∣∣∣ ≤ ‖∇v‖ δt L
(∫ δt

0
|Lf(Xt)|2 dx3

) 1

2

≤ ν

4
‖∇v‖2 + 1

ν
δ2t L

2

(∫ δt

0
|Lf(Xt)|2 dx3

)
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Hence inserting estimate (4.18) in (4.17), and collecting terms that involve ‖∇v‖, we have the

following stochastic equation.

1

2
d‖v‖2 +

(
1

2
− δt |Xt|

2ν

)
ν‖∇v‖2dt+ σ

∫

Dδt

v1f
′(Xt)dx dWt

≤
[
σ2

2

∫

Dδ

(f ′(Xt))
2 dx+ νL2 |Xt|2

δt
+

1

ν
δ2t L

2

∫ δt

0
|Lf(Xt)|2 dx3

]
dt.

(4.19)

All stochastic differential inequalities appearing in this paper should be interpreted in their corre-

sponding integral forms.

We note that the calculations up to and including (4.19) work for a general C2 function δ = δ(z).

For δ as in (2.2) it is crucial to choose A and B such that
(
1
2 − δt |Xt|

2ν

)
in the second term of (4.19)

to be strictly positive. Such conditions are summarized in the following lemma.

Lemma 4.3. Let δt = δ(Xt), where Xt is a stochastic process in R and δ(z) = A
z2+B

. Suppose A

and B are positive numbers such that A
B < h and A ≤ ν

√
B. Then with probability one, for all t ≥ 0

we have δt < h and

(4.20)
1

4
≤ 1

2
− δt |Xt|

2ν
≤ 1

2
.

These hold if, for instance, A = νU and B = U2 and U h
ν > 1.

Proof. Note that δt ∈ (0, h) if A
B < h. Next, by the inequality z

z2+B
≤ 1

2
√
B

for all z ∈ R, we have

1

2
− A

4ν
√
B

≤ 1

2
− δt |Xt|

2ν
.

The term on the left is at least 1/4 if A ≤ ν
√
B. �

We summarize the above derivations in the following almost sure upper bound for the energy

dissipation, which is the main result of this section.

Lemma 4.4. Suppose A and B are positive constants such that A
B < h and A ≤ ν

√
B. Then with

probability one, the following inequality holds for all T > 0.

(4.21)

∫ T

0
ν‖∇v‖2dt+ 4MT ≤ 2‖v(0)‖2 − 2‖v(T )‖2 + YT ,

where

(4.22) MT := σ

∫ T

0

∫

Dδ

v1

(
1− x3

3X2
t +B

A

)
dx dWt.

and

(4.23) YT := 4L2 T

[
3

2

A

B
+

6

ν

(
A

B

)3 σ2

B

]
σ2 + 4L2

∫ T

0

(
ν
|Xt|2
δt

+
6

ν

(
A

B

)3

θ2 |U − Xt|2
)
dt.
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Proof. The stochastic integral term in (4.19) is

σ

∫

Dδ

v1f
′(Xt)dx dWt = σ

∫

Dδ

v1

(
1− x3

3X2
t +B

A

)
dx dWt.

We now estimate terms on the right hand side of (4.19). For the first term,
∫
Dδ

(f ′(Xt))
2 dx =

L2
∫ δt
0 (f ′(Xt))

2 dx3 and

∫ δt

0
(f ′(Xt))

2 dx3 =

∫ δt

0

(
1− x3

3X2
t +B

A

)2

dx3

= δt − δ2t
3X2

t +B

A
+

δ3t
3

(
3X2

t +B

A

)2

≤ δt − δ2t
X
2
t +B

A
+

δ3t
3

9

δ2t

≤ 3
A

B
,(4.24)

where we used the fact that
3X2

t
+B
A ≤ 3

δt
and δ(z) ≤ A

B for all z ∈ R.

Now we consider the term involving Lf(Xt). By the definition (4.3) of L and the elementary

inequality (a+ b)2 ≤ 2(a2 + b2),

Lf(Xt) = f ′(Xt)θ(U − Xt) +
σ2

2
f ′′(Xt)

|Lf(Xt)|2 ≤ 2 |f ′(Xt)|2 θ2 (U − Xt)
2 +

σ4

2

(
f ′′(Xt)

)2
.

So using (4.24) and the expression f ′′(Xt) = −6x3
Xt

A , we see that in the last term on the right of

(4.19),
∫ δt

0
|Lf(Xt)|2 dx3 ≤ 2 θ2 (U − Xt)

2

∫ δt

0
(f ′(Xt))

2 dx3 +
σ4

2

∫ δt

0

(
f ′′(Xt)

)2
dx3

≤ 6
A

B
θ2 (U − Xt)

2 + 6σ4 X
2
t

A2
δ3t

≤ 6
A

B
θ2 (U − Xt)

2 + 6σ4 δ
2
t

A

≤ 6
A

B
θ2 (U − Xt)

2 + 6σ4 A

B2
.(4.25)

In the above, we used the fact that |Xt|2 ≤ A
δt

and δt ≤ A
B .

Hence after using δt ≤ A
B , the right hand side of (4.19) (ignoring dt) is bounded above by

(4.26)
3σ2

2
L2 A

B
+ νL2 |Xt|2

δt
+ L2

(
6

ν

(
A

B

)3

θ2 (U −Xt)
2 +

6

ν

(
A

B

)3 σ4

B

)
.
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Applying (4.20) to the second term on the left of (4.19), and (4.26) to the right of (4.19), we

obtain

1

2
‖v(T )‖2 − 1

2
‖v(0)‖2 + 1

4

∫ T

0
ν‖∇v‖2dt+ σ

∫ T

0

∫

Dδ

v1

(
1− x3

3X2
t +B

A

)
dx dWt

≤L2

∫ T

0

(
3

2

A

B
σ2 + ν

|Xt|2
δt

+
6

ν

(
A

B

)3

θ2 (U − Xt)
2 +

6

ν

(
A

B

)3 σ4

B

)
dt

=L2 T

[
3

2

A

B
+

6

ν

(
A

B

)3 σ2

B

]
σ2 + L2

∫ T

0

(
ν
|Xt|2
δt

+
6

ν

(
A

B

)3

θ2 |U − Xt|2
)
dt.

(4.27)

�

Condition (2.6) ensures that the process M defined in (4.22) is a martingale.

Lemma 4.5. The process (Mt)t≥0 defined in (4.22) is a martingale whose quadratic variation

satisfies

[M ]T ≤ 3σ2L2

(
A

B

)3 ∫ T

0
‖∇v‖2 dt for T ≥ 0.(4.28)

Proof. Applying Lemma 4.2 with Gt = f ′(Xt) = 1− x3
3X2

t
+B
A , and then (4.24), we have

(4.29)

∣∣∣∣
∫

Dδ

v1 f
′(Xt) dx

∣∣∣∣ ≤ ‖∇v‖ δt L
(∫ δt

0

∣∣f ′(Xt)
∣∣2 dx3

) 1

2

≤ ‖∇v‖ δt L
(
3A

B

) 1

2

≤ 31/2 ‖∇v‖L
(
A

B

)3/2

.

In the above, we used the fact that δ(z) ≤ A
B for all z ∈ R.

Hence the quadratic variation of MT is

[M ]T =σ2

∫ T

0

[∫

Dδ

v1

(
1− x3

3X2
t +B

A

)
dx

]2
dt

≤σ2

∫ T

0

[
31/2 ‖∇v‖L

(
A

B

)3/2
]2

dt

≤3σ2

(
A

B

)3

L2

∫ T

0
‖∇v‖2 dt.

�
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5. Estimation of the Mean Value

To construct the estimate on E[〈ǫ〉T ], we shall take the expected value of (4.21) with respect to

P, then average it over [0, T ], and finally take the limit superior as T → ∞. Since u = v + Φ, we

obtain

(5.1)

∫ T

0
‖∇u‖2dt =

∫ T

0
‖∇v +∇Φ‖2dt ≤ 2

∫ T

0
‖∇v‖2 + ‖∇Φ‖2dt.

The second term in the integrand is, from (4.15),

(5.2) ‖∇Φ‖2 = ‖ ∂φ

∂x3
‖2 = L2

δt
X
2
t = L2 X

4
t +BX

2
t

A

Hence

E

[∫ T

0
‖∇Φ‖2dt

]
=

T L2

A
E
[
X
4
t +BX

2
t

]
(5.3)

which can be evaluated explicitly using (5.4) and (5.5) below. From Proposition 2.1,

E
[
|Xt|2

]
=U2 +

σ2

2θ
, E

[
|U − Xt|2

]
=

σ2

2θ
,(5.4)

E
[
|Xt|4

]
=U4 + 6U2

(σ2

2θ

)
+ 3
(σ2

2θ

)2
, E

[
|U − Xt|4

]
= 3
(σ2

2θ

)2
.(5.5)

We now estimate the first term on the right of (5.1). From Lemma 4.5, MT is a martingale and

hence

(5.6) E[MT ] = 0 for all T ∈ [0,∞).

Therefore, taking the expectation E of both sides of (4.21) gives

(5.7) E

∫ T

0
ν‖∇v‖2dt ≤ E

[
2‖v(0)‖2 + YT

]
.

We shall estimate the expectation of the integral term in YT defined in (4.23). To this end we

need some standard properties for the stationary OU process and Gaussian random variables as

stated in Proposition 2.1. Recall that, Xt has normal distribution with mean U and variance σ2

2θ for

all t ∈ R+ under P. Hence U − Xt is a centered normal variable with variance σ2

2θ .

Hence we can compute the expectation of the integral of (4.23) as follows.

E

∫ T

0

(
ν
|Xt|2
δt

+
6

ν

(
A

B

)3

θ2 |U − Xt|2
)

dt

=E

∫ T

0

(
ν
X
4
t +BX

2
t

A
+

6

ν

(
A

B

)3

θ2 |U −Xt|2 dt
)

=T

{
ν

A

(
U4 + 6U2

(σ2

2θ

)
+ 3
(σ2

2θ

)2
+BU2 +B

σ2

2θ

)
+

6

ν

(
A

B

)3

θ2
σ2

2θ

}
.(5.8)



THREE-DIMENSIONAL SHEAR DRIVEN TURBULENCE WITH NOISE AT THE BOUNDARY 15

Now we continue from (5.7). Divide both sides by T and |D| = L2h, and use (5.8) to obtain

lim sup
T→∞

1

TL2h
E

∫ T

0
ν‖∇v‖2dt

≤ lim sup
T→∞

1

TL2h
E[YT ]

=
4

h

[
3

2

A

B
+

6

ν

σ2

B

(
A

B

)3
]
σ2

+
4

h

{
ν

A

[
U4 + 6U2

(σ2

2θ

)
+ 3
(σ2

2θ

)2
+BU2 +B

σ2

2θ

]
+

6

ν

(
A

B

)3 σ2θ

2

}
.(5.9)

Finally, by (5.1) and (5.9), one obtains the estimate

ε ≤ lim sup
T→∞

2

TL2h
E

∫ T

0
ν‖∇v‖2dt+ lim sup

T→∞

2

TL2h
E

∫ T

0
ν‖∇Φ‖2dt

≤ 8

h

[
3

2

A

B
+

6

ν

σ2

B

(
A

B

)3
]
σ2

+
8

h

{
2ν

A

[
U4 + 6U2

(σ2

2θ

)
+ 3
(σ2

2θ

)2
+BU2 +B

σ2

2θ

]
+

6

ν

(
A

B

)3 σ2θ

2

}
.

Taking A = νU , B = U2 (which seem to be nearly optimal), in terms of the Reynolds number

Re = Uh
ν , the above estimate can be written as,

ε ≤ 32
U3

h
+ 2

(
6

1

Re
+ 28

U

hθ
+ 12

1

Re2
h θ

U
+ 24

1

Re2
hσ2

U3
+ 6

σ2

hU θ2

)
σ2 .(5.10)

Remark 5.1 (Large noise regime). When the noise is large compared to the mean of the OU process,

U , one might interpret our estimate in terms of the alternative characteristic velocity Ũ = σ/
√
θ as

ε .
1

h

{[
h

R̃e

Ũ

U
+

hθ

R̃e
2

Ũ4

U5

]
θŨ2 + U3 + UŨ2 +

Ũ4

U
++

h2θ2

R̃e
2

Ũ4

U3

}

∼ 1

h

{
U3 + UŨ2 +

Ũ4

U

}
for large R̃e = Ũh/ν .

Remark 5.2 (Over-dissipation). If, in our analysis, we were to instead take Xt to be Brownian

motion, i.e., Xt = Wt, this would result in a potential over-dissipation of the model, since,

1

T
E

[∫ T

0
|Xt|2 dt

]
=

1

T

∫ T

0
E
[
W 2

t

]
dt =

1

2
T → ∞, as T → ∞.

Remark 5.3. If θ → 0, the estimate in (5.10) tends to infinity. Roughly speaking, this potential

over-dissipation of the model is consistent with Remark 5.2. This because as θ → 0, the OU process

(2.1) tends to σW which is a Wiener process with a constant time-change.
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6. Estimation of higher moments

To estimate higher moments of

〈ǫ〉T =
1

|D|
1

T

∫ T

0
ν‖∇u(t, ·, ω)‖2L2(D) dt ,

we shall need higher moments of the stationary OU process Xt. By Proposition 2.1,

E
[
|Xt|6

]
=U6 + 15U4σ

2

2θ
+ 45U2

(
σ2

2θ

)2

+ 15

(
σ2

2θ

)3

,(6.1)

E
[
|Xt|8

]
=U8 + 28U6σ

2

2θ
+ 210U4

(
σ2

2θ

)2

+ 420U2

(
σ2

2θ

)3

+ 105

(
σ2

2θ

)4

.(6.2)

More generally, for all integer k ≥ 1, E
[
|Xt|2k

]
= U2k + Pk(U

2, σ2/(2θ))for some polynomial Pk.

By (5.1), for all p ∈ [1,∞),

E

[∣∣∣∣
∫ T

0
‖∇u‖2dt

∣∣∣∣
p
]
≤ 2p E

[∣∣∣∣
∫ T

0
‖∇v‖2 + ‖∇Φ‖2dt

∣∣∣∣
p
]

≤ 4p

(
E

[∣∣∣∣
∫ T

0
‖∇v‖2dt

∣∣∣∣
p
]
+ E

[∣∣∣∣
∫ T

0
‖∇Φ‖2dt

∣∣∣∣
p
])

.(6.3)

To bound the second term on the right of (6.3), from Hölder’s inequality we have

E

[∣∣∣∣
∫ T

0
‖∇Φ‖2dt

∣∣∣∣
p
]
≤T p−1

E

[∫ T

0
‖∇Φ‖2pdt

]
.(6.4)

We shall focus on the case p = 2, even though our estimates below can be extended to any

p ∈ [1,∞). From (6.4) and (5.2)

E

[∣∣∣∣
∫ T

0
‖∇Φ‖2dt

∣∣∣∣
2
]
≤ T E

[∫ T

0
‖∇Φ‖4dt

]
≤ 2T 2 L4

A2
E
[
X
8
t +B2

X
4
t

]
(6.5)

which can be computed explicitly using the moment formulas (5.5) and (6.2) for the OU process.

For the first term on the right of (6.3), we write

(6.6) ET :=

∫ T

0
ν‖∇v‖2dt.

Lemma 4.4 asserts that

(6.7) ET ≤ 2‖v(0)‖2 + YT + |MT |.

Hence

(6.8) E

[
|ET |2

]
≤ 3E

[
4‖v(0)‖2 + |YT |2 + |MT |2

]
.
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6.1. Bounding E[M2
T ]. By Lemma 4.5, Jensen’s inequality and then Young’s inequality, we obtain

3E[M2
T ] = 3E[[M ]T ] ≤αE[ET ]

≤α
√

E[|ET |2] ≤
α2

2
+

E[|ET |2]
2

(6.9)

where α = 9σ2L2

ν

(
A
B

)3
has the same dimension as that of ET when we choose A = νU and B = U2.

6.2. Bounding E[|YT |2]. We apply the elementary inequality (a+ b)2 ≤ 2(a2+ b2) and the Cauchy-

Schwarz inequality to (4.23) and to obtain

|YT |2 ≤ 32L4 T 2

[
3

2

A

B
+

6

ν

(
A

B

)3 σ2

B

]2
σ4

+ 32L4 T

∫ T

0

(
ν
|Xt|2
δt

+
6

ν

(
A

B

)3

θ2 |U − Xt|2
)2

dt.(6.10)

Applying (a+ b)2 ≤ 2(a2 + b2) again, the integrand in the second term is bounded above by
(
ν
|Xt|2
δt

+
6

ν

(
A

B

)3

θ2 |U − Xt|2
)2

≤2

(
ν2

(X4
t +BX

2
t )

2

A2
+

36

ν2

(
A

B

)6

θ4 |U − Xt|4
)

≤4ν2

A2
(X8

t +B2
X
4
t ) +

72

ν2

(
A

B

)6

θ4 |U − Xt|4

Hence

E[|YT |2] ≤ 32L4 T 2

[
3

2

A

B
+

6

ν

(
A

B

)3 σ2

B

]2
σ4

+ 32L4 T 2

(
4ν2

A2
E[X8

t +B2
X
4
t ] +

72

ν2

(
A

B

)6

θ4 E[|U − Xt|4]
)
.(6.11)

6.3. Summarizing. Putting (6.9) into (6.8), we obtain

E[|ET |2] ≤12E
[
‖v(0)‖2

]
+

(
α2

2
+

E[|ET |2]
2

)
+ 3E[|YT |2].

Rearranging terms gives

E[|ET |2] ≤24E
[
‖v(0)‖2

]
+ α2 + 6E[|YT |2].(6.12)

Combining (6.12) with (6.3) (with p = 2) gives

E

[∣∣∣∣
∫ T

0
ν‖∇u‖2dt

∣∣∣∣
2
]
≤ 16

(
E
[
|ET |2

]
+ E

[∣∣∣∣
∫ T

0
ν‖∇Φ‖2dt

∣∣∣∣
2
])

≤ 384E[‖v(0)‖2 ] + 16α2 + 96E[|YT |2] + 16E

[∣∣∣∣
∫ T

0
ν‖∇Φ‖2dt

∣∣∣∣
2
]
.
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Hence using (6.5) and (6.11), and recalling |D| = L2h, we have

lim sup
T→∞

E[〈ǫ〉2T ] ≤ 16 lim sup
T→∞

E[|ET |2]
|D|2T 2

+ 16 lim sup
T→∞

1

|D|2T 2
E

[∣∣∣∣
∫ T

0
ν‖∇Φ‖2dt

∣∣∣∣
2
]

≤ 96

|D|2
{
32L4

[
3

2

A

B
+

6

ν

(
A

B

)3 σ2

B

]2
σ4

+ 32L4

(
4ν2

A2
E[X8

t +B2
X
4
t ] +

72

ν2

(
A

B

)6

θ4 E[|U − Xt|4]
)}

+
16ν2

|D|2
2L4

A2
E
[
X
8
t +B2

X
4
t

]

≤ 3072

h2

{[
3

2

A

B
+

6

ν

(
A

B

)3 σ2

B

]2
σ4

+

(
4ν2

A2
E[X8

t +B2
X
4
t ] +

72

ν2

(
A

B

)6

θ4 E[|U − Xt|4]
)}

+
32ν2

h2A2
E
[
X
8
t +B2

X
4
t

]

≤ 3072

h2

{[
3

2

A

B
+

6

ν

(
A

B

)3 σ2

B

]2
σ4 +

72

ν2

(
A

B

)6

θ4 E[|U − Xt|4]
}

+
12320ν2

h2A2
E
[
X
8
t +B2

X
4
t

]
.

Now applying the moment formulas (5.5), (6.2) and setting A = νU and B = U2, the above upper

bound is

(6.13)

lim sup
T→∞

E[〈ǫ〉2T ]

≤ 3072

h2

{[
3

2

A

B
+

6

ν

(
A

B

)3 σ2

B

]2
σ4 +

216

ν2

(
A

B

)6

θ4
(σ2

2θ

)2}

+
12320ν2

h2A2

{[
U8 + 28U6σ

2

2θ
+ 210U4

(
σ2

2θ

)2

+ 420U2

(
σ2

2θ

)3

+ 105

(
σ2

2θ

)4
]

+B2

[
U4 + 6U2

(σ2

2θ

)
+ 3
(σ2

2θ

)2]}

≤ 3072

h2

{[
3

2

ν

U
+

6σ2ν2

U5

]2
σ4 +

216ν4

U6
θ4
(σ2

2θ

)2}

+
12320

h2U2

{[
2U8 + 34U6σ

2

2θ
+ 213U4

(
σ2

2θ

)2

+ 420U2

(
σ2

2θ

)3

+ 105

(
σ2

2θ

)4
]

=
24640U6

h2
+ σ2 PU,ν,θ(σ)

where PU,ν,θ(σ) is an explicit polynomial in σ whose coefficients are explicit functions of U, ν, θ.
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Remark 6.1 (Higher moments). One can readily obtain estimates for higher moments by follow-

ing our method. Note that (6.3) and (6.4) still hold, and for all integer k ≥ 1, E
[
|Xt|2k

]
=

U2k + Pk(U
2, σ2/(2θ)) for some polynomial Pk. For the martingale term (6.9), one can apply the

Burkholder-Davis-Gundy Inequality. We expect that for all integer k ≥ 1, the 2k-th moment of

〈ǫ〉T satisfies

(6.14) lim sup
T→∞

E[〈ǫ〉2kT ] .
U6k

h2k
+ σ2 P (σ)

where P (σ) = PU,ν,θ(σ) is an explicit polynomial in σ whose coefficients are explicit functions of

U, ν, and θ.

7. Conclusion and Commentary

In this paper we have derived uniform (in T ) bounds for both the mean and the second moment

of the energy dissipation rate for solutions of the incompressible Navier–Stokes equations with a

boundary wall moving as a stationary Ornstein–Uhlenbeck process. As the variance of the OU

process tends to 0, we recover an upper bound for the deterministic case as in [15]. A similar

argument can be used to find higher moment bounds. A novelty of our method is the construction of

a carefully chosen stochastic background flow Φ that depends on the stochastic forcing, as indicated

in (2.2). Our technique can be readily generalized to obtain bounds for higher moments and to the

case where the OU process is replaced by a gradient system of the form

(7.1) dXt = −∇h(Xt) dt+ σ dWt,

where h is a function and σ ∈ R. The OU process (2.1) is the case where h(x) = −θ(x− U)2/2. It

is well-known that if

Z(σ) :=

∫

R

exp

(−2

σ2
h(x)

)
dx < ∞ ,

then the 1-dimensional gradient system (7.1) has a unique invariant distribution given by the Gibbs

measure

(7.2)
1

Z(σ)
exp

(−2

σ2
h(x)

)
.

The analysis herein would allow for over-dissipation of the model if the noise at the boundary were

taken to be the Wiener process, as noted in Remarks 5.2 and 5.3.

Finally, it was crucial to take the limit superior in time after the expectation. Our estimate does

not provide a bound when the operations are taken in the reverse order. It remains to find a bound

in the latter case, or quantify the difference in the two expressions describing the rate of dissipation.
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9. Appendix

Proof of Lemma 4.2: we first write v1(x1, x2, x3) as
∫ x3

0
∂v1
∂ζ (x1, x2, ζ) dζ, and apply the Cauchy-

Schwarz inequality to obtain

(9.1)∣∣∣∣
∫

Dδ

v1Gt dx

∣∣∣∣ =
∣∣∣∣
∫ L

0

∫ L

0

∫ δt

0
Gt v1 dx3dx2dx1

∣∣∣∣

=

∣∣∣∣
∫ L

0

∫ L

0

∫ δt

0
Gt

(∫ x3

0

∂v1
∂η

(x1, x2, η)dη

)
dx3dx2dx1

∣∣∣∣

=

∣∣∣∣
∫ L

0

∫ L

0

∫ δt

0

∫ x3

0
Gt

∂v1
∂η

(x1, x2, η) dηdx3dx2dx1

∣∣∣∣

≤
(∫ L

0

∫ L

0

∫ δt

0

∫ x3

0
|Gt|2 dηdx3dx2dx1

) 1

2

(∫ L

0

∫ L

0

∫ δt

0

∫ x3

0

∣∣∣∣
∂v1
∂η

∣∣∣∣
2

dηdx3dx2dx1

) 1

2

Now we estimate the terms on the right hand side of (9.1) as,

(∫ L

0

∫ L

0

∫ δt

0

(∫ x3

0
|Gt|2 dη

)
dx3dx2dx1

) 1

2

≤
(∫ L

0

∫ L

0

∫ δt

0

(
|Gt|2

∫ x3

0
1 dη

)
dx3dx2dx1

) 1

2

= L

(∫ δt

0
|Gt|2 x3 dx3

) 1

2

≤ δ
1

2

t L

(∫ δt

0
|Gt|2 dx3

) 1

2

and,

(∫ L

0

∫ L

0

∫ δt

0

∫ x3

0

∣∣∣∣
∂v1
∂η

∣∣∣∣
2

dηdx3dx2dx1

) 1

2

=

(∫ δt

0

∫ L

0

∫ L

0

∫ x3

0

∣∣∣∣
∂v1
∂η

∣∣∣∣
2

dηdx2dx1dx3

) 1

2

≤
(∫ δt

0

∫ L

0

∫ L

0

∫ δt

0

∣∣∣∣
∂v1
∂η

∣∣∣∣
2

dηdx2dx1dx3

) 1

2

≤ δ
1

2

t ‖∇v‖.
Plugging the above two estimates in (9.1) yields the desired inequality.
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