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Abstract

We study an unsteady nonlinear fluid—structure interaction problem which is a
simplified model to describe blood flow through viscoelastic arteries. We consider
a Newtonian incompressible two-dimensional flow described by the Navier—Stokes
equations set in an unknown domain depending on the displacement of a structure,
which itself satisfies a linear viscoelastic beam equation. The fluid and the structure
are fully coupled via interface conditions prescribing the continuity of the velocities
at the fluid—structure interface and the action-reaction principle. We prove that
strong solutions to this problem are global-in-time. We obtain, in particular that
contact between the viscoelastic wall and the bottom of the fluid cavity does not
occur in finite time. To our knowledge, this is the first occurrence of a no-contact
result, and of the existence of strong solutions globally in time, in the frame of
interactions between a viscous fluid and a deformable structure.

1. Introduction

In this paper, we focus on the interactions between a viscous incompressible
Newtonian fluid and a moving viscoelastic structure located on one part of the fluid
domain boundary. This work is motivated by the study of blood flow in arteries
and the fluid—structure interaction (FSI) model we consider here can be viewed as
a simplified version of a standard model/benchmark for FSI problems/solvers in
hemodynamics [13,42]. Here we are interested in global existence results and the
possibility of the collapse of the arterial wall. Consequently, we investigate whether
or not a collision occurs between the moving boundary and the bottom of the fluid
cavity together with the existence of global-in-time strong solutions.

A vast majority of studies on the existence of a solution for fluid—structure
interaction problems concerns the motion of arigid solid in a viscous incompressible
Newtonian fluid, whose behavior is then described by the Navier—Stokes equations
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(see[6,10,11,14,26,32,33,35,44,45,47,48]). A challenging point is the possibility
of body—body or body—boundary collisions. In particular, these existence results are
valid up to contact, except those of [44] and [14], where special weak solutions after
possible collisions are built in the two dimensional case and in the three dimensional
case respectively. The contact issue is further investigated in [28] and [29] where
a no-collision result is proven in a bounded two-dimensional cavity. The three-
dimensional situation is also explored in [31] and in [30]. We mention that, in [44,
46], collisions, if any, are proved to occur with zero relative translational velocity
as soon as the boundaries of the rigid bodies are smooth enough and the gradient
of the surrounding fluid velocity field is square integrable. A complementary study
of the influence of the smoothness of boundaries on the existence of collisions
has been recently tackled in [17] and [18]. In [17] it is proven that below a critical
regularity of a two dimensional rigid body boundary, namely C'-!/2, collisions may
occur; in [19] and [20] slip boundary conditions at the fluid—structure interface are
introduced and the existence of weak solutions up to collision/existence of finite
time collisions are proven respectively.

Fewer studies consider the case of an elastic structure evolving in a viscous
incompressible Newtonian flow. We refer the reader to [12] and [4] where the
structure is described by a finite number of eigenmodes or to [3] for an artificially
damped elastic structure while, for the case of a three-dimensional elastic structure
interacting with a three-dimensional fluid, we mention [16,24] in the steady-state
case and [7,8,34,43] for the full unsteady case. In the latter, the authors consider
the existence of strong solutions for small enough data locally in time. In this field,
the question of selfcontact and/or body—boundary collisions remains entirely open,
to our knowledge.

Concerning the fluid—beam, or more generally fluid—shell coupled systems that
we consider herein, the two dimensional/one dimensional steady state case is con-
sidered in [25] for homogeneous Dirichlet boundary conditions on the fluid bound-
aries (that are not the fluid—structure interface). The existence of a unique strong
enough solution is obtained for small enough applied forces. In the unsteady frame-
work we refer to [5] where a three dimensional/two dimensional fluid—plate coupled
system is studied and where the structure is a damped plate in flexion. The case of
an undamped plate is studied in [23]. The previous results deal with the existence
of weak solutions, that is in the energy spaces, and rely on the only tranversal
motion of the elastic beam that enables to circumvent the lack of regularity of the
fluid domain boundary (that is not even Lipschitz). These results also apply to a
two dimensional/one dimensional fluid—shell coupled problem which is recently
considered in [41]. In this reference, the authors give an alternative proof of the
existence of weak solutions based on ideas coming from numerical schemes [21].
The existence of strong solutions for three dimensional/two dimensional, or two di-
mensional/one dimensional coupled problems involving a damped elastic structure
are studied in [1,38,39]. The proofs of [38,39] are based on a splitting strategy for
the Stokes system and on an implicit treatment of the so called fluid added mass
effect. Finally, the coupling of a three dimensional Newtonian fluid and a linearly
elastic Koiter shell is recently studied in [37]. In this study, the mid-surface of the
structure is not flat anymore and the existence of weak solutions is obtained.
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In all the results we mentioned up to now, the existence of strong solutions
is obtained locally in time while the existence of weak solutions is obtained up
to contact between the elastic structure and the fluid cavity. Consequently, if one
wants to prove the existence of solutions globally in time, either one should give a
sense to solutions in case of collision or one should prove that no collision occurs.
In this paper we investigate these issues on a two dimensional/one dimensional
fluid—beam coupled problem in which the beam is viscoelastic and moves only in
the tranversal direction relatively to its flat mid-surface. One already knows that a
unique strong solution exists locally in time [39], whereas weak solutions exist as
long as the beam does not touch the bottom of the fluid cavity (see [5] or [23] and
[41] in the undamped beam case). Note that, in this model, the fluid domain is a
subgraph whose regularity depends on the structure displacement. In connection
with the rigid-body case, we mention that energy estimates ensure that the beam
displacement belongs to L;’O(Hf) that embeds in LY (C;’“), for « = 1/2. This
corresponds precisely to the threshold exhibited in [ 17]. In this paper, the strategy we
develop is first to prove that no contact occurs and next, to propagate the solution
regularity. In the second step, the cornerstone is an elliptic regularity result for
the inhomogeneous Stokes system valid for nonstandard regularity of the domain
boundary.

2. General Setting, Main Result and Formal Argument

We consider a two dimensional container whose boundary is made of a one
dimensional viscoelastic beam, which is a simplified linear viscolelastic Koiter
shell model [41]. Due to the complexity of the underlying fluid—structure interaction
problem we assume that only the upper part of the fluid cavity is moving. The fluid
domain denoted F () C R? depends then on time since it depends on the structure
displacement 7. It reads

F@t) :={(x,y) e R?, x € (0, L), y € (0, h(x, 1))}

where (x, t) — h(x,t) = 1+n(x, t) stands for the “deformation” of the beam. We
assume that the fluid is two dimensional, homogeneous, viscous, incompressible
and Newtonian. Its velocity-field # and internal pressure p satisfy the incompress-
ible Navier—Stokes equations in F(¢):

pr@u+u-Vu) —divo(u, p) =0, (1)
divu = 0. 2)

The fluid stress tensor o (u, p) is given by the Newtonian law:
o, p) = p(Vu+Vu') = ph.

Here u denotes the viscosity of the fluid and p its density. The structure motion
is given by a linear damped beam equation in flexion:

PsOh — BOxxh + o Oxxxxh — Y Oxxth = ¢(u, p, h), on (0,L), 3)

where ¢, 8, y are positive given constants and ps > 0 denotes the structure density.
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We emphasize that the beam equation is set in a reference configuration whereas
the fluid equations are written in Eulerian coordinates and consequently in an un-
known domain. Note moreover, that we choose to write the beam equation on A
and not on the beam displacement = i — 1 as is standard, since this is equivalent
in the case one considers here and since it simplifies the presentation. The fluid
and beam equations are coupled through the source term ¢ (u, p, h) in (3), which
corresponds to the trace of the second component of o (u, p)ndl transported in the
beam reference configuration. The coupling term can be written as:

du,p,h)(x,t) =—ex-o(u, p)(x,h(x,1),t)(=0ch(x,t)e; +e2), (4)

for (x,1) € (0, L) x (0, T), where (1, e2) denotes the canonical basis of R2. The
fluid and the beam are coupled also through the kinematic condition

u(x, h(x,t),t) = oh(x,t)ea, (x,t) € (0,L)x (0, T). 4)

We complement our system with the following conditions on the remaining bound-
aries of the container:

—  L-periodicity with respect to x for the fluid and the beam;
— no-slip boundary conditions on the bottom of the fluid container:

u(x,0,t) =0. (6)

Note that since the question of contact is mostly a local one we assume periodic
boundary conditions at the outlet for the fluid and replace the standard assumptions
of “clamped” arterial wall also by periodic boundary conditions for the beam.

An important remark on this coupled system is that the incompressibility con-
dition together with boundary conditions imply:

L
/ oh=0. Yt=0. 7
0

Consequently, for any classical solution (u, &, p) to this system, the right-hand side
of (3) must have zero mean:

L
/ ¢, p,h)=0.
0

It can be achieved thanks to a good choice of the constant normalizing the pressure
which is consequently uniquely defined. The pressure can be then decomposed, for
instance, as

p=rpo+c, (8)

where one chooses to impose

po =0, ()
F(1)

and where c satisfies

1 L
c(n) = Z/o e+ (0 (u, po))(x, hix, 1), 1)(—0xh(x, 1) er + e2) dx. (10)
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This constant c is the Lagrange multiplier associated with the constraint (7). Another
mathematical way to compel the solution with this compatibility condition, without
defining the physical average of the fluid pressure c, is to introduce the L?-projection
operator on the set of L-periodic functions whose averages are equal to zero on
(0, L), denoted My, and rewrite (3) as

PsOih — BOxxh + a0xxxxh — Y Oxxh = Mgp(u, p, h). (11)

This is the choice made in [39].

2.1. Main Result

In what follows, we call (BF) the “beam-fluid” system (1)—(2)—(3)—-(4)—(5)—-(6)—
(8)—-(9)—(10). We study herein the (BF) system, completed with initial conditions:

h(x,0)=h%x), xe(,L), (12)
ah(x,0) =h%x), xe€(0,L), (13)
u(x,y,0) =u(x,y), (x,y) €fxe(0,L),ye O hx)}=F (14)

Our aim is to study this Cauchy problem and, specifically, to prove the existence
of a unique global-in-time strong solution.

We first give some notations and definitions and make precise the functional
framework. For any given positive function b € Cy(0, L), that is the set of
continuous and L-periodic functions on R, we define

Q= {(x,y) e R?*s.t.x € (0, L),y € (0, b(x))}.

With this definition F (1) = £2;(,.). We denote by Cé’o (§2p) the restriction on £2
of L-periodic functions in x indefinitely differentiable on

Op = {(x,y) e R?s.t. y € (0, b(x))}

Note that Op + Le; C Op and Op = U782, + Lke;. We introduce the classical
spaces Lg (£2p) and H}"(£2)) respectively as the closures of C7°(£2;) in LP(£2;)
or H™(82p). We define in the same way Cé 0, L), Lg(O, L) and Hﬁm (0, L). More
generally, the subscript i stands for the periodic version in the first variable of a
function space. We emphasize that, contrary to the usual convention, we consider
that time is the last variable of a function. This enables to write a unified definition
for periodic functions whether they depend on one space variable only (such as the
height function /) or two space variables (such as the velocity-field ). Finally, we
set:

L
1250,L1) = feLg(o,L)s.t./ f:o],
0

and, in the same way,

L: o($2) := { f € L3 () s.t./Q f= o] ,
b
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Then the projection operator M, that is applied to Equation (3) leading to Equation
(11), is the orthogonal-projector from Lé(O, L) onto LéyO(O, L).
We state our main result as follows:

Theorem 1. Let us consider o > 0, 8 2 0 and y > 0. Assume that the initial data
(ho, hO, uo) satisfy:
- (h° A% € H}(0, L) x H}(0, L),

- u’ e H/(FY),
— no-slip condition is fulfilled initially:

u(x,00 =0, u’@, h°x) =h%x)es, Vx e (0, L), (15)

— no-contact and incompressibility compatibility conditions are fulfilled initially:

L
min 7%(x) > 0, / W0 =0, (16)
x€[0,L] 0
divu® =0 on FO. (17)

Then (BF) has a unique global-in-time strong solution.

A precise definition of what is a “strong solution” is given in Section 3. Our proof
for Theorem 1 follows a classical scheme: local-in-time existence and uniqueness
of solutions, blow-up alternative and a priori estimates. Local-in-time existence
and uniqueness of strong solutions has already been tackled in [39] for clamped
boundary conditions instead of periodic boundary conditions. In Section 3, we
explain shortly how this result can be adapted to our functional framework with
periodic lateral boundary conditions. This construction leads to the existence of a
unique maximal solution for any given initial data, that blows up in finite time if
and only if the quantity

L
C(t) = dexxh e, D12 + y18:h(x, D)) d
(1) XS[‘?)‘,’L]h(x,nJr/o (locchr, OF + y1ah(r, 0) dx
L phx,n)
[ vty nPasdy (18)
0 Jo

diverges in finite time (see Corollary 1). Note that existence of weak solutions as
long as the beam does not touch the bottom of the fluid cavity can be obtained also
by adapting [5,23] or [41] to our setting.

In this paper, the main novelty is the computation, for any local-in-time strong
solutions to (BF), of a new a priori estimate on C, defined by (18). This estimate
enables us to derive a regularity estimate valid on any given time interval (0, 7). We
emphasize that, in order to obtain these estimates, we have to assume that ¢ > 0
and y > 0. This ensures first that the elastic boundary remains regular, second
that the beam dissipates energy. Whether or not these assumptions can be dropped
remains an open question (notice that existence of weak solutions before contact is
still valid fore = y =0 and 8 > 0).
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2.2. Formal Argument

Before considering the full Navier—Stokes/beam system, and in order to illus-
trate the different steps of the proof, let us first consider a reduced model for which
we derive similar bounds (at a formal level for conciseness). This coupled system
can be written as

psattb - ﬂaxxb +« 8xxx)cb 4 a,\f)ctb =dq, on (01 L), (]9)
&b = d,[h°d,q], on (0,L), (20

where b stands for the deformation of the beam (analogue of /) and ¢ denotes the
fluid pressure. To complete these equations, we require that ¢ satisfies

L
/ q=0, Vt>0, 21
0

and we impose periodic boundary conditions in x. We note that this system is
formally related to (BF) in the regime & << 1. Indeed, in this regime, the aspect
ratio of the fluid film is very small. It is then known that the fluid pressure is
computed by integrating a Reynolds equation and that the action of the fluid film on
the beam is mostly due to pressure terms. The above toy-model is thus constructed
by coupling the Reynolds equation (20) satisfied by the fluid pressure with the beam
equation (19) in which only pressure terms are kept. We refer to [36, Section 5.B]
for a detailed derivation of the Reynolds equation.

Let (b, g) be a(classical) L-periodic solutionto (19)—(21)on (0, T) with T > 0.
First, multiplying (19) by 3,4 and combining with (20) multiplied by ¢ yields:

L L
[/0 (ps|a,b|2+ﬂ|axb|2+a|axxb|2)]+/0 (v 10bl? + o) = 0.

We obtain that there exists a constant Cp depending only on initial data for which:

1d
2dt

2 2 2
sup | psl9:bl72 +allbll},2 + BlIbl )
te(O,T)( S L7 (0,L) HZ(0,L) Hy (0,L)

I A T P <c (22)
0 y t Hul(O,L) Xq L%(O,L) = 0-

In what follows, C denotes a constant depending only on the initial data but which
may vary between lines. To obtain a lower bound on b, we multiply (19) by —0,+b
and integrate over (0, L). We then integrate by parts in space. By taking into account
the periodic boundary conditions and (20), we obtain:

d L y 5 L ) . X
E |:/0 (E|axxb| _psatbaxxb)] +/(; (,B|axxb| +a|axxxb| _pslatxb| )

L L L 1
=—/ qaxxbz/ quaxbz/ bacg | —=0,b
0 0 0 b3
1 L 1 1 (L ab
— | bPogo| === =.
2/0 v "[bz} 2/0 [z
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Finally, we deduce:

d /Ll 19 b|2+1 /L 3b Oy
ar )y 2 YV 10xx b ) Ps0tD Oxx
L L
+ / (Bloxcbl? + alduccb?) = / Ps|Becb . (23)
0 0

Combining with the previous bound (22), we get that there exists a constant Co
such that:

2 -1
sup ()/Ilbll 2 + 167 L L)
eO.T) H2(0.L) 10,1)

T
+/O @bl 30,0y + BN q 1, < Co- 24)

Note that, if p; # 0, to obtain the previous estimate one should compute an upper

bound for
T /L 5 L
//,oslaszl, sup / Ps0rb dxxb.
o Jo 1(0,7)J0

From (22) these terms are bounded if y > 0 and if y or « is strictly positive
respectively. At this point, we call a real-analysis lemma which states that there
exists a continuous function Dy, for which:

—1 o < . —1
15~ Na20.0) = Donin (1B 20.2> 15~ 1 130,1,)

(see “Appendix A.1” for a proof). The first consequence of this inequality is that
(24) implies that b remains away from zero uniformly in time. Combining this
information with the dissipation estimate (22) we obtain that there exists a constant
Co for which:

T
-1 2
sup ([lb (-,r)||Looo,L)+/ 191,101, = Co-
1€(0,7) e 0D 0 H#; (0.L)

Consequently the pressure is bounded in LZ(O, T; Hﬁ1 (0, L)). Next we derive
a regularity estimate for the deformation b by multiplying (19) by —9;,,b. This
yields after integration by parts in space:

1d L 2 2 2 L 2 L
5_ Ps10rxb|” + |0y xxb|” + Bloxxb|” | + ¥ [0rxxb|” = q0xxb.
dr [ Jo 0 0

Thanks to the L2(0, T; Hﬁ1 (0, L))-bound on g, we reach the required estimate that
enables us to extend solutions globally in time:

2 2 2
sup \ «llbllys . 1 FBIGIG 2 1 F Psll0DN) )
o) ( H3(0.L) H2(0.L) TP H}0.L)

T
+y /0 161320, = Co- (25)
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This ends the formal proof of a no collision result, on the one hand, and of a
global-in-time existence of strong solutions, on the other hand.

In Section 4, we prove that comparable estimates hold true for the complete
coupled system (BF). First, considering the full beam/Navier—Stokes system, the
analogue of (22) corresponds to the (already-known) classical decay of kinetic
energy. To obtain a similar estimate to (24), we multiply (11) by —d,,/ and mul-
tiply (1) by a suitable extension of —d,, /. The choice of this extension is a key
point of the proof (see Section 4.2). We then obtain an identity similar to (23) with
additional remainder terms that we bound thanks to the energy estimate and for
which a control of 4 in L*(0, T; H(0, L)) N L*(0, T; HZ(0, L)), resp. a control
of d;h in L%(0, T; Hﬁl (0, L)) is needed (hence o > 0, resp. y > 0). The exten-
sion of the last estimate (25) is more involved. Indeed, when dealing with the full
Navier—Stokes/beam system, we also have to control the fluid velocity-field « in
L0, T; Htil (F(1))) (and not only the pressure field as for the toy model). When
working in cylindrical domains, such an estimate is obtained by multiplying (1) with
d:u and by applying elliptic estimates for the Stokes system in order to bound the
convective terms. However, these elliptic estimates are classically proven in C!!-
domains or W2 _domains [2,15]. Here as A is, at this stage of the proof, merely
L*>(0, T; Hﬁ2 (0, L)), we cannot directly apply these standard regularity properties,
so we need to extend the elliptic results for the Stokes system to domains which are
only subgraphs of H?-functions and analyze precisely the dependency of the asso-
ciated elliptic estimates with respect to the norms of / (see Lemma 1). This proof is
an adaptation to a periodic framework of a lemma that can be found in [22]. More-
over, as the fluid domain is moving with time, instead of d,u, we need to consider a
multiplier that takes into account this motion. The most natural choice is 0;u+u-Vu,
but this function is not divergence-free and consequently pressure terms appear that
cannot be handled easily. To avoid this difficulty, we mimic the method usedin [9] in
the framework of fluid/solid interactions. We introduce a divergence-free multiplier
avoiding the introduction of the pressure in the regularity estimate. Moreorever this
multiplier is chosen so that the associated multiplier for the structure equation is
d:+h. Nevertheless, special attention needs to be paid since the structure motion is,
once again, less regular than when considering fluid/solid interactions.

The outline of this paper is as follows. In next section, we focus on the change
of variables turning the beam/fluid system into a quasilinear system in a fixed
geometry. We recall the construction of local-in-time strong solutions of [39] and
adapt this result to our periodic boundary conditions framework. We end the section
by a technical proposition dealing with elliptic estimates for the inhomogeneous
Stokes system in H2-subgraph domains. The third and last sections are devoted
to the proof of Theorem 1. They are divided into three subsections corresponding
respectively to the extension of the three estimates (22), (24) and (25) to solutions
of the coupled problem (BF).

3. Local-in-Time Strong Solutions and Technical Lemmas

In this section, we first adapt the construction of local-in-time strong solutions
of [39] to our periodic setting. To this end, we will apply the following change of
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variables:
f,2) = fx,h(x)2), V(x,2) € 2. (26)

To measure the regularity of such a change of variable, the following technical
proposition is required:

Proposition 1. Let us consider h € Hﬁz(O, L) satisfying min¢o,1.] h(x) > 0. Then
for any givenm < 2,

— the mapping [ +— f defined by (26) realizes a linear homeomorphism from
Hﬁm (£2y,) onto HI;” (£21),

— there exists a non decreasing function Ky, : [0, +00) — (0, 00) such that, if
we assume moreover that ||h||H,2((),L) + ||h! ||L§°(O,L) < Ry then there holds:

1AW e 20 S K (RO 1z 2

£ 12 S KR F g
Proof. The proof is standard. For m € {0, 1} the result easily derives from the fact
that h € W'°(0, L) is bounded from below by a strictly positive constant. For
m = 2, the key point is that the motion of the upper boundary is tranverse only so

that we combine the regularity of # with the following tensorization of the space
H}(2)):
f

H} (1) = H}((0, L) x (0, 1)) = LZ(0, L; H'(0, 1)) N H} (0, L; L*(0, 1).

The most delicate point enters the computation of ||y f I L3 (@) We have:

Ouxf = Dux [+ 20205y f + 120y f + (W' 2) 200y ]

in which the worst term is 4”z3, f. It is bounded in L2(£2y) since h" € L2(0, L)
and

Oy f € HI(21) < L0, L; L*(0, 1)) N L3(0, L; L¥(0, 1)).

3.1. Construction of Local-in-Time Solutions

As explained previously, the local-in-time existence and uniqueness of strong
solutions to (BF) are tackled in [39] with no normalizing condition for the pres-
sure ((8)—-(9)—(10) is replaced with (11)), with homogeneous Dirichlet boundary
conditions for the fluid velocity on the part of the boundary that is not elastic and
with “clamped” boundary conditions for the structure. Namely, instead of periodic
boundary conditions, the displacement n = h — 1 satisfies

n0,t) =n(L,t) = 0n(0,t) =0n(L,t) =0, Vte(0,T).
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The proof of the existence of solutions follows a classical method, also introduced
in [26,48] when dealing with fluid/solid interactions. To look for solutions on a
time-interval (0, T'), new unknowns (i, p) are first introduced applying the trans-
formation (26):

~ Yy A
u(x,y,t)=u ( o)’ ) .oplx,y ) = p( o)’ ) . (oY) e F@).
(27
These new velocity-field and pressure (i, p) are defined in the cylindrical domain
£21 x (0, T) and (u, p, h) is a solution to (1)—(2)—(3)—(4)—~(5)—(6)—(11) if and only
if the triplet (i, p, h) is solution to a coupled system of quasilinear PDEs that we
choose not to write here for the sake of conciseness. The core of the existence and
uniqueness result is the study of this nonlinear system. First, the author analyzes, via
a semi-group approach, the resolution of the linear system obtained by linearizing
aroundn = 0(orh = 1),i = 0, p = 0. This study is based on an accurate treatment
of the added mass effect of the fluid on the structure through an appropriate splitting
of the fluid load. Then, the nonlinear terms are estimated and the author proves that
they remain small for a small time. The local-in-time existence and uniqueness of
a solution to the system of nonlinear PDEs is finally obtained by a standard fixed
point argument.
In our periodic framework, computation of nonlinearities might be reproduced
without change while the semi-group approach might be adapted in the spirit of
[38]. Consequently, for any initial data such that

h'e H}O,L), h°e H!O,L), u’eH (F, (28)
and satisfying the compatibility conditions:
L

in h° 0, W’ =0, 29

x?ﬂéf}] (x) > /0 (29)

divu® =0, on F°, (30)

u0(x, h°(x)) = h%(x)ez, x € (0, L), 31)

u®(x,0) =0, x € (0, L), (32)

we obtain local-in-time existence and uniqueness of a strong solution (&, p, h)
to the Cauchy problem associated with the translation of (1)—(2)—(3)-(4)-(5)-(6)-
(11)1in a fixed geometry, completed with periodic boundary conditions. The solution
verifies:

i e H'(0, T; L3(£21)) N C([0, T} H} (20)) N L*(0, T H7 (21)).  (33)

p e L*0, T; H} (1)), (34)
h e H*(0,T; L3(0, L)) N L*(0, T; H}(0, L)) (35)
h~'e L0, L) x (0, T)). (36)

We emphasize that, following the proof of [39], the pressure p is defined up to a
constant for now. The regularity statement (35) and (36) ensures that the function
h is Lipschitz on (0, L) x [0, T']. Moreover, since & satisfies also
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% e W0, L) x (0, T)), (37)

we obtain that the domain F(¢) and the non cylindrical domain defined by:
Ql = {(x3 yss)s X € (Os L)v § € (O’ t)) ye (Osh(s3x))}7 Vt § T:

are both Lipschitz open subsets of R? and R? respectively.
Going back to the moving domain by inverting the transformation (27), we
define strong solutions of (BF) as follows

Definition 1. Let the initial data (h°, 2%, u%) € H}(0, L) x H}(0, L) x H}(F°)
satisfy (29)—(30)—(31)—(32) and let T > 0. A strong solution to (BF) on (0, T),
associated with the initial data (h°, %, u?), is a quadruplet (h, u, p, c) satisfying:

— h,u, p and c have the following regularity:

he H*0,T; L0, L)) N L*(0, T; H(0, L)), (38)
= e L0, L) x (0, T)), (39)
ueH (Qr), Viueli(Qr), celL*0,T), VpeLi(Qr), (40)

— Equations (1)-(2) are satisfied almost everywhere in Qr,

— Equations (8)-(9)—(10) are satisfied almost everywhere in (0, T'),

— Equations (3)—(5)—(6) are satisfied almost everywhere in (0, L) x (0, T),

— Equations (12)-(13)—(14) are satisfied almost everywhere in (0, L) and FO.

We emphasize that the pressure p in our definition is completely fixed and that u
is a time—space function. Hence, the condition u € Hﬁ1 (Q7) involves both time and
space derivatives of u, whereas V p involves space derivatives only. The construction
that we describe above, adapted from [39], yields the following existence and
uniqueness theorem:

Theorem 2. Let us consider o > 0, B = 0 and y > 0. Assume that the initial data
(h°, h°, u®) belong to H(0, L) x H} (0, L) x H} (F°) and satisfy the compatibility
conditions (29)—(30)—(31)—(32). There exists Ty > 0 such that forany0 < T < Ty,
there exists a unique strong solution to (BF) on (0, T).

Proof. In the whole proof initial data (h°, i°, u°) are fixed. The only points that
we want to make clear here are:

— the link between the regularity (33)—(34)—(35)—(36) of the solution (i, p, h)
to the nonlinear system in a fixed geometry and the regularity statements of
Definition 1;

— the computation of the Lagrange multiplier ¢ that we introduce here and that
does not appear in [38,39].

Let (i1, p, h) be the solution to (1)—(2)—(3)—(4)—(5)—(6)—(11) written in a fixed
geometry, that one constructs adapting the arguments of [38,39] as explained in
introduction. The deformation /4 (-, ) and its inverse 1/h(-, t) are then uniformly
(with respect to ¢ € [0, T']) bounded in Hf (0, L) and L§°(O, L). So, we construct
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(u, p) via (26) and apply Proposition 1 to obtain a fluid velocity and a fluid
pressure that satisfy their contribution to (40). Noting that, in the aforementioned
construction, p is defined up to a time-dependent constant and that ¢ (u, p+c, h) =
¢ (u, p, h) + c, we fix p by requiring further that:

L
/ ¢, p,h)=0, Vte@,T). 41)
0

We then write p = po + ¢ with pg satisfying (9) and with c being fixed by (10).

Due to the regularity of &, u and po we obtain finally that ¢ belongs to L2(0, T').
Conversely, for any given strong solution (%, u, p, ¢) of (BF) in the sense of

Definition 1, we construct (i, p) by (27) and refer to Proposition 1 again yielding:

e H'(0,T; L;(2) N L*(0. T: H}(21)), p € L*(0, T H (2))).

We then apply [40, Theorem 3.1] and deduce that € C ([0, T']; Httl (£21)) and get
that, for T small enough, (i1, p, k) is the unique solution to (1)—(2)—(3)—~(4)—(5)-
(6)—(11) written in a fixed geometry, as constructed by adapting the arguments of
[38,39]. O

Remark 1. From the regularity we just derived for iz, we deduce that, for any strong
solution (u, p, h) the mapping ¢ — f]—‘(z) |Vu|2(t) belongs to CO([O, T)).

Finally, we obtain that (BF) is wellposed locally in time. Following [39], it appears
that we might choose the time 7p in Theorem 2 to be fixed by

0 0 -1 0
1% 30,0 + 1 30,0 + 1 20,0 + 160 g3 oy

only (see the computation of 7j at item (i), page 408). Then the following blow-up
alternative can be classically stated:

Corollary 1. Let @ > 0, 8 = 0 and y > 0 be given. Assume that the initial data
(h°, h°, u%) belong to H; (0, L) x Hﬁ1 0, L) x Httl (F°) and satisfy the compatibility
conditions (29)—(30)—(31)—(32). Then (BF) completed with initial conditions (12)—
(14) has a unique non-extendable strong solution (T*, (h, u, p, c¢)). Furthermore,
we have the following alternative:

(i) either T* = 400
(ii) either T* < oo and

tim sup (I8¢, D1l 30,2, + 18 ¢ DL 0.1

t—T*

+ ”h—l(., t)”L::)O(O’L) + fu(, t)”Hnl(]:(t))) = +00.

The aim of Section 4 is to prove that the second alternative (ii) never holds and
consequently that the solution is defined on any finite time interval (0, 7). How-
ever, before going any further we focus on the elliptic regularity properties of the
inhomogenous Stokes system in a subgraph domain.
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3.2. Elliptic Estimate

In this subsection we derive elliptic estimates for the inhomogeneous Stokes
problem in a domain £2; with h € H(0, L) such that 2~ € LZ°(0, L). With this

regularity, the domain is neither C'*! nor W and one cannot apply standard
elliptic regularity results. Nevertheless, we take advantage here of the fact that £2),
is a subgraph so that the change of variable transforming £2;, into a flat domain
(namely £21) can be chosen to be smooth in the transverse variable (see xj below).
This remark enables us to extend the classical method with / belonging merely to
Huz(O, L). Such an estimate is a key argument in the derivation of the regularity
estimates for the solution of the nonlinear system (BF).

For simplicity, we fix u = 1 in this part. Let us consider source terms and a
boundary condition

3
(f.8) € L3(21) x H, (1), 7€ H2 (0, L).

We aim at studying the regularity properties of L-periodic (with respect to x)
solutions to

—Au+Vpy=f, in 2, 42)
divu =g, in £, (43)
completed with boundary conditions:
u(x, h(x)) = n(x)ea, Vx e (,L), 44)
u(x,0) =0, Vxe(,L). (45)

Integrating divu = g over £2;, implies that the boundary velocity 7 has to satisfy

L
/ 772/ 8- (46)
0 25

The left-hand side of (46) does not involve the deformation %, because the defor-
mation as well as the boundary velocity are vertical. In what follows, we restrict to
data g € L%yO(Qh) and i € L§,O(O, L) for which (46) is clearly satisfied.

Remark 2. Note that, for this inhomogeneous Stokes problem, with Dirichlet bound-
ary conditions, the pressure py is defined up to a constant. Consequently, we enforce
the uniqueness of the pressure by imposing:

/ po=0.
2

The main result of this section is:

Lemma 1. For any h € Hﬁz(O, L) such that h~! € LEO(O, L), source terms and
boundary condition

3
(f.8) € LE(2n) x (H} (£21) N L3 o(21)), 1 € H? (0, L) N L3 (0, L),
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there exists a unique solution (u, po) € th(.Qh) X (Hﬁ1 £2,) N Lg,o(Qh)) to the
Stokes system (42)—(43)—(44)—(45). Moreover, there exists a non-decreasing func-
tion K* : [0, 0c0) — (0, 00) such that, if we assume ”h”H’f(O,L) + a7t ||L;>°(0,L) <

R then, this solution satisfies:

||”||H:2(Qh) + ||PO||H1:1(_Qh)

= KS(RO)(||f”L§(Qh) gl + ”ﬁ”H%(o L))- 47

The remainder of this section is devoted to the proof of Lemma 1. This proofis an
adaptation, to our periodic framework, of the computations on the Stokes problem
that can be found in [22], which, in itself, uses ideas from [49]. Compared to [22],
we also carefully analyze the dependance of the constant K* on / in inequality
(47). To obtain the expected dependency, we assume throughout this section that:

1l 20.) + 1H 2o,y < Ro.

and show that K* depends only on Ry.

First step: Rewriting of the Stokes system in a given geometry. As in [22] we
compute regularity estimates for solutions to (42)—(45) by studying the Stokes
system transported in a geometry which does not depend on the deformation /.
Namely, we derive regularity estimates on (i, p) defined by (27). Indeed, thanks
to Proposition 1, we remark that (u, p) € Hﬁz(Qh) X Hnl(.Qh) is a solution to

(42)—(45) if and only if (&, p) € sz(.Ql) X Hﬁ1 (£21) is a solution to the following
Stokes-like system

— div[(Ay V)il + (ByV)po = f. in £, (48)
div(B)4) = g, in £, (49)

completed with boundary conditions:

i(x, 1) = nx)es, Vx e (0,L), (50)
i(x,0) =0, Vx e (0,L), S

where (Ap, Bp) and ( f , &) are explicit. Indeed, by introducing the mapping x
(x,2) = (x, h(x)z), for (x, z) € 21, we obtain:

_ L
B :=cof Vy, = (?) il Z) , (52)

Ay = L (cof V)T cof ¥ h ok (53)
ho—h COL V Xp) COL V Xp = W %“F(hth)z s

and the transported source terms:

f=hf, &:=hs.
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We note that f € L3(£21), & € L3 ((21) N H}(£21). Thus, thanks to Propo-
sition 1, to prove Lemma 1 it is sufficient to derive similar estimates but on the
transported unknowns (i, p) solution of (48)—(51). Namely, we obtain that there
exists a unique (i, po) € HF(21) x (H/(21) N L ;(£21)) solution of (48)~(51)
that satisfies

||LA¢||Hn2(.Ql) + ||ﬁ0||1-1ﬁ1(91) = K(||f||L§(91) 18l @2y + ||ﬁ||H%(0 L)), (54)
u i

where the constant K depends only on Ry. Since the matrices B and Aj are
in Hﬁl((O, L); H*(0, 1)), for any s = 0, we have that A, and By belong to a

multiplier space of H 1 (£21). We refer the reader to [22, Lemma 6] for more details.
In particular, we obtain that for any v € Hﬁ2(.{21), there holds div[(A,V)v] €

L%(.Ql) and, for any g € Hﬁ1 (£21), there holds (B, V)q € L%(.Ql). Thanks to Piola
identity, we also have:

div(B, v) = B, : Vv, (55)

so that, for any v € Hﬁz(.Ql), there holds diV(B,T v) € Htil (£21). Consequently the
assumptions on the deformation 4 are compatible with the expected regularity on
(@, p).

Remark 3. Let us mention that we get estimates for a pressure pg such that

[ =0
2

Through the change of variables (26), this implies that the pressure ¢, defined
by g(x,y) = po(x,y/h(x)) and on which we deduce an estimate, verifies the

following constraint
/ 1 _y.
2 h

Thus, the pressure we compute with this method does not match the one mentioned
in Lemma 1. Nevertheless, the effective pressure py mentioned in Lemma 1 reads
Pyq where P, stands for the L>-orthogonal projector on L§ 0($2n):

1
po=Prg:=q— — q
121] J g,

satisfying ”pO”Hul ) < ||q||Hul (@) Hence, we prove (47) with pg replaced by g.

Let us now study precisely the existence and uniqueness of (i, p) in Hﬁ1 (£21) x
Lio(Ql) and derive elliptic estimates in Huz(.Ql) X Hﬁ1 (£21).

3
Second step: Lifting of the Dirichlet boundary conditions. As1n € Hﬁ2 (0, L) there
exists u; € Hﬁz(.Q]) such that Wy _, = nes, Uiy = 0 and
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luill 2oy S Clill 3 (56)
1 H?(0,L)

with a constant C depending only on the fixed geometry. We set it = i1 — uy;. This
new velocity satisfies:

— div[(Ap V)il + (B V)po = f, in £, (57)
div(B i) =g, in £, (58)
with
f=f+divi(AyVou;l, §:=§&— B) : Vu,,
completed with boundary conditions:
a(x,1) =0, Vx e (0,L), (59)
i(x,0) =0, Vx e (0,L). (60)

As underlined previously, thanks to the regularity of A, and By, the new source
terms (f, g) belong to Lg(.Ql) X Htil (£21) and satisfy the following estimates:

”f”L%(Ql) + ”g”[-]jl(gl) § K(||f||L§(Ql) + ”g”Hnl(Ql) + ”ﬁ”H%(O,L))7 (61)

f

where K depends only on Ry. Moreover the average of g on 21 is still equal to

Zero, since
L
/ B,j:Vu,F/ div(B,juﬁ)z/ n=0.
21 2 0

Recalling that u; satisfies (56), we obtain now that the proof of Lemma 1 reduces
to the study of the case 7 = 0 ( that is solving system (57)—(58)—(59)—(60)).

Third step: H' x L? estimates. We first define Hﬁ_l (£21) as the dual space of the
subset of Hﬁ1 (£21) of functions with zero trace on (0, L) x {0} and (0, L) x {1}.
The aim of this step is to prove that, for any (f, ) € Hﬁ*1 (£21) x Léyo((zl), there
exists a unique (i, pg) € Hﬁ1 (£21) x Lﬁ’O(Ql) solution of (57)—(60) and satisfying

1l 3y + B0l 202 S K (17010 + 181 202) - (62)

where K depends only on Ry. Since the arguments are quite standard (see, for
instance, [22,25] in similar contexts), we only sketch the main points of the proof.
First, we notice that:

— Aj € L®°(£21) and there exists two non negative constants | and a controlled
by above and from below by a function of R( for which

arll = Ap(x,2) Sl V(x,2) € 2,

in the sense of symmetric matrices;
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— By, is invertible and B;l belongs to Hﬁl((O, L); H*(0, 1)), for any s = 0, with
norms dominated by a function of Ry only.

With the second point at-hand, we build a lifting operator for the divergence.
Namely, for any x € L%vo(()]), there exists a vector-field w € Hﬁl (£21), with
w)._, = w|,_, = 0, such that

div(By w) = X, wly e, = Klxlze,) (63)

where K depends only on Ry. Indeed, as x has zero average on £21, there exists
v E Hjl(.Q]), with v,_, = v|__, = 0, such that

div (v) = g, ”U”Hul(-Ql) = C“X”Lé(ﬂl)'

See, for instance, [15, Lemma II1.3.1]. We set then w = Bh_Tv. As Bh_T is a
multiplier of H' with norm bounded by a function of Ry, we obtain (63).

Then, to solve (57)—(60) we first lift the divergence source term g by applying
the previous construction. We then solve the Stokes-like system (57) and (58) by
reproducing the classical arguments for the Stokes system. As A, satisfies the first
point, we first construct a weak solution u € Hﬁl(.Ql) depending continuously

on (f,g). Then, as B, ! satisfies the second point, we obtain also the pressure
po € Lé’o(.Ql) which completes (62).

Fourth step: Proof of Lemma 1, H?/H"-regularity. To complete the proof of
Lemma 1, it remains to obtain an estimate on the second order derivatives of u and
the first order derivatives of py. We obtain that

il + 150l S K (1702 + 18lmpan) s 6%

where K depends only on Ry. We follow the method introduced in [49] and already
applied in [22] in our subgraph framework. Thanks to a classical regularization
argument, we assume in what follows that & € Cé’o (0, L). In this case, classical
elliptic estimates ensure that (i, pg) € HﬁZ(.Q]) X Hﬁ1 (£21). Nervertheless the
standard elliptic estimates involve norms of the deformation in W20, L) (see
for instance [2]). Consequently, we aim to show that the constant only involves Ry.

First we obtain estimate on i, := 9y and py := 0y pg. For this purpose,
we differentiate the equations (57), (58) satisfied by (iz, po) with respect to x. We
obtain that (ity, py) € Htl (£21) x L%,O(‘Ql) is the solution of

~div[(ApV)iix] + (ByV) px = fr. on 21,
div (B) ity) = 8,5 — 0, B : Vii, on £,
where f, = 9y f +div[(d, Ay, V)ii] — (8, B, V) po, completed with periodic bound-
ary conditions on lateral boundaries of £2; and homogeneous boundary conditions

ony = 1and y = 0 (we recall that we consider the case i = 0).
We note that

9By : Vit = div(d, B} 1),
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which implies

/ 3B, : Vi =0.
29

Consequently, taking into account that g is L-periodic with respect to x, we obtain
that g, = 0,8 — BXB;— : Vu has a zero average on §21. Due to the regularity of
(i, po), the right-hand side (fx, gx) belongs to Htt_l (£21) x L%(Ql), but we need
sharp estimate to show our main result. As we stated previously (9, Ay, 9 Bj) €
L2((0, L), ; H%(0, 1)), for arbitrary s = 0, (with norms bounded by a function of
Rp) and Htl((O, L) x (0, 1)) € L&((0, L); L?(0, 1)). Hence, in the spirit of [22,
Lemma 6], we obtain

Idiv (@ AnV)D 1 g
< _ < _.1/2 - 172
= ||(8XAhv)u”L§(_Ql) = K”u”Hul(Ql)”ux”Hﬁl(-Ql)’ (65)
and
18, By : Vil < Klal'y o lact? (66)
xh Li(2) = ml@en " el @)

where K depends on Ry. Next we have to estimate (3, B, V) po in Hﬁ_1 (£21). Thanks
to the Piola identity and the fact that Bj, is the cofactor matrix of the gradient of
Xn, we obtain, for any w € Hﬁ1 (£21) such that w__, = w|,_, =0

(0, B,V pow = —/ pod By : V.

£2) 21

Consequently, as in the computations of the latter bounds, we obtain:

1/2 172

L§(91)||px”L§(91)' (67)

1@x Bi V) poll 1 gy, = Kol

We can now apply the result obtained at the previous step to (ity, py). Combining
with (65)—(67), this leads to

”L_‘x”H:] 2D + ||ﬁx||L§(Ql) é K(||f||L§(_Ql) + ”g“Hnl(_Ql)

- 1/2 - 172 ~ 172 ~ 0 1/2
a7 o 17, + ||po||L§(Ql)||px||L§(Ql)|),
and finally to:
||l'_‘x||H:1(Ql) + ”ﬁx”L?(Ql) é K (||f_||L§(Ql) + ”g”H:l(Ql)) . (68)

To obtain a similar estimate on the full second order gradient of u (resp. on the
full gradient of pg), we have to bound d,,u (resp. 9, po). To this end, we note that,
differentiating (58) with respect to z and applying (68), we have

. 7 < F o
| —zh 0;;u1 + 821”2”L§(_Ql) S K (||f||L§(Ql) + ”g”Lg(Ql)) .
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Combining the first equation of (57) with the second equation of (57) multiplied
by zh’, in order to eliminate the pressure, leads to

||Zh/azzlz2 + azz’zl ||L§(_Ql) § K (”]F”Lg(gl) + ”g”Hﬁl (_Ql)) .

By simple algebraic combinations, since 1 4+ z2(h)> > 0, we obtain

2_ ~ -
19222 = K (1712000 + 1802202 -

A similar inequality holds for |9, p|| 12(@)) using once again the first equation of

(57). Combining these inequalities, we finally obtain the desired bound

”12”1-1:2(91) + ”pAO”Hﬁl(QI) é K (||f||L§(91) + ||g||L§(_Ql)) .

This ends the proof of Lemma 1.

For the study of the whole coupled system, we need an estimate on the surface
load applied by the fluid on the structure. If we compute ¢ (u, p, h) through the
change of variable (27) (that is with respectto i, p and h,) and we use, for instance,
the multiplier Lemma [27, Proposition B.1] or Proposition 1, we can also obtain
the following corollary, stated without proof:

Corollary 2. Let h € HI:Z(O, L) such that h~' e Lgo (0, L) be given there exists
a non decreasing function K’ : [0,00) — (0, 00) such that, if ||h||1—1j2(0,L) +
A= L(0.L) < Ry the following propositions hold true.

Given source terms (f, g) € L%(.Qh) X (Hﬁ1 (£2)N Lé,o(Qh)) and a boundary
condition 1 € Hﬁ% ©O,L)ynN Lio(O, L) satisfying (46), the unique pair (u, pg) €
HZ($2;) x (H} (1) N L3 o(£20)) solution to (42)~(43)~(44)~(45) satisfies:

l @, po, I 1
an 0,L)

SKb(Ro)(IIfIILz + gl g + 9l 3 ) (69)
= (2n) H}(21) 3
1 2 Hﬁz(O,L)

The constant c defined by ¢ = % fOL ¢ (u, po, h) satisfies

el £ KPR\ 1 £l 20, + gl gy + 1011 2 : (70)
L3(2n) H}(21) 3 0.0

4. Proof of Theorem 1

Let (h°, i, u®) € Hj:3 0, L) x Hﬁl (0. L) x H}(F°) be given and satisfy the
compatibility conditions (29)—(32). We consider (4, u, p, c), the associated non-
extendable strong solution to (BF) completed with the initial conditions (12)—(14)
(in the sense of Definition 1). This solution is defined on some time-interval [0, T*),
where 7% > (0. We compute estimates satisfied by this solution on [0, T'] for
arbitrary T < T*.
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The proof of Theorem 1 is divided into three parts, each of them corresponding
to the derivation of one estimate similar to (22), (24) and (25) respectively. First,
we recall the energy estimate satisfied by the solution, then we prove a distance
estimate which ensures that the beam does not touch the bottom of the fluid cavity on
the time interval (0, T') and finally we derive a regularity estimate which garantees
that the strong solution can be extended on any given time interval, leading to our
global-in-time existence theorem.

4.1. Energy Estimate

We first recall the classical estimate associated with the dissipative equations
that we consider. We introduce £, and H respectively the total energy of the coupled
system and the dissipated energy:

1 L
Ec(1) :=§[/ (ps|a,h|2+a|a“h|2+ﬂ|axh|2)+/ pf|u|2]
0 F@)

L
H(r) :=y/ |3txh|2+M/ |Vul.
0 F@)

‘We then have:

Proposition 2. The following energy balance holds true
13
Ect) —I—/ H(s)ds = £.(0), Vie[0,T]. (71)
0

Proof. Multiplying first (1) by ©# and integrating by parts leads to

t t
/ / (Gtu+u~Vu)-u=/ / divo (u, p) -u

0 JF(s) 0 JF()

t t
:/ / U(u,p)n'u—ZM/ / |D(u)|?
0 JaF(s) 0 JF(s)
t L t
—/ / ¢>(u,p,h)a,h—zu/ / |D@w)|*. (72)
0 JO 0 JF()

In the last equality we have used the coupling conditions at the interface between
the fluid and the structure. Moreover thanks to the only vertical motion of the
beam together with the divergence free constraint (see [5, Lemma 6] in the three
dimensional case), there holds:

2/ |D(u)|2=/ [Vul?. (73)
Fs) Fs)

Furthermore, since the boundaries of J (#) move with the velocity-field u, we have

t 1 s=t
/ / (8tu+u~Vu)-u=—|:/ |u|2:| , (74)
0 JF 2Ure Jimo
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Consequently

1 2 ! 21 o2 [ L
lul” + |Vul® = |u”| ¢, p,n)oh. (75)
2 JFw 0 JFe) 2 JFo 0 Jo

If we now multiply the beam equation (3) by 0,/ we obtain, after time and space
integration by parts,

1 L
3| (et 4 atoon + pio.nr) |
0 s=0

t L t L a
+y// |atxn|2:// (. p. W)orh. (76)
0 JO 0 JO

By summing (75) and (76), we obtain the expected result. 0O

s=t

4.2. Distance Estimate

The aim of this section is to prove the following proposition:

Proposition 3. There exists a constant Co depending only on initial data for which:

2 -1
sup (Y1t M0, + 10710 0.1
1€(0.7) HZ(O.L) Lho.L)

T
2
+a/0 11330,) = Col+ 7).
The remainder of this paragraph is devoted to the proof of this result. Let us consider
0 < ¢ £ T.In all what follows C denotes a constant depending only on the initial
data but which may change between lines. Let w = V1t = (=0yy, 0xYr) where

l/f(x,yvf)=axh(xJ)XO( )a V(x,yvt)GQT,

y
h(x, 1)
with

x0(2) =2°(3 —2z), VYze(0,1).

Combining the regularity of & (which implies that » € C([0, T]; Hﬁ3 0, L)) N
HY 0, T; th(O, L)) thanks to [40, Theorem 3.1] see (38)) with xo € C*°([0, 1])
we obtain that w € H'(Qr) and V2w € L?(Qr). This regularity is enough to
justify all computations below as (h, u, p, c¢) is a strong solution. Moreover, w

is divergence free by construction and, since xo(1) = 0 and x,(1) = x0(0) =
x4(0) = 0, there holds:

w(x, h(t,x),t) = 0 h(t,x)ey, forallx € (0,L)andr € (0,7),
w(x,0,1) =0, forallx € (0, L)andr € (0, T).

Consequently, we multiply (1) by w and (3) by 9,/ and integrate on Q;, for
arbitrary t < T. We get after integration by parts (note that the terms involving the
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fluid/beam interactions cancel out since the structure test function is the trace of
the fluid test function on the interface):

—/ pr@u+u-Vu) - w—2u/ D(u) : D(w)

/ / ﬁ|axxh|2+a|8xxxh| )
+[/ (S laa? psathaxxh)] // Pl (77)
0 s=0

We first show that this identity leads to an estimate that is comparable to (23) up to
remainder terms we shall bound afterwards. The term that will enable us to bound
h=1is 21 fQ, D(u) : D(w). To deal with this term, we introduce a well chosen
pressure:

q@x.y, 1) = qs (X, 1) + 0y Y (X, y, 1),

78
qs(x,t) := —/ Oyyy¥ (s, y,t)ds, VY(x,y, 1) e Qr. (78)
0
Oxh(x,t .
An easy computation gives dyy, (s, y, 1) = —IZﬁ, so that ¢, satisfies
X, 1))

[T ahGn 1
%(x’”_]z/o st_ﬁ[lmo,mz |h(x,r)|2] 7

In particular, ¢, does not depend on y. Furthermore Vg € L?(Qr). Applying again
the fact that w is divergence-free, we obtain:

> /Q D) : D(w) = / @D(w) — qIy) : D(w)

/ / @D (w) — ql)n - u
aF (s)

—/ (Aw —Vgq) - u. (80)
(of

Note, that all the terms make sense thanks to the regularity of (w, ¢). In this last
identity, by definition (78) of ¢, we have:

/ (Aw—Vq)u :/ axxxl// M2_28yxx1pul
Q; QO

t
= / / (n10xxYrup — 2n20xxYuy)
0 JaF(s)

—/ Dux ¥ (Bt — 20,u1)
t

t L
—// Oxx W (x, h(x,s),s)oh(x,s)o h(x,s)dxds
0J0

_/ Oxx ¥ (Oxun — 23);Lt1).
(o
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Similarly, the other term of (80) can be expressed as

t
/ / 2D(w) —ql)n -u
0 JaF(s)

t pL

= [ [ (@51, = Bt b ). 5D )
0 JO

W 0 I, 5),8) — g5 (8, 9) ) dads,

Differentiating the identity 0y (x, h(x, s), s) = O (that holds true since xé(l) =
0), with respect to x, yields

Oy ¥ (x, h(x,s),s) + dxh(x, s)dyy ¥ (x, h(x,s),s) = 0.

Consequently, we simplify:

t
/ / 2D(w) — gI)n - u
0 JoF(s)

t L
= —/ / Orh(x, )0 ¥ (x, h(x,s),s))och(x,s)dxds
0 JO

t rL
—/ / orh(x, s)gs(x, s) dxds.
0 Jo

Combining the computations of both terms in (80), we obtain finally:

t L
2/ D(u):D(w):—// 8thqs+/ Oex W (Oyuz — 20yu1).  (81)
o} 0 Jo o}

At this point, we replace g; by its explicit value (see (79)) and by remembering that
the average of 9,/ is zero, we obtain

6 s=t
[[omsf [l mme] @

Consequently, from (81), (82), the equality (77) reduces to:

L
[ (Bt —psa,haxxh+—)} [ (B + et

// PREWY +u/ xxwaxuz—zayum/g p @t + 10 - Vi) - w.
t
83)

We recognize in the left-hand side of this equality the quantities that we want to
estimate as in (23). Compared to (23), we have two additional terms

T1=M/Q Dy (Byuz — 20yu1), T2=/Q Py + 1 Vi) - w.
t t
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To bound these terms, we need precise estimates on the stream-function 1 that are
gathered in “Appendix A.2”.
First, T7 is bounded by applying Proposition 8 and energy estimate (71)

/ Oxx Y (Oxun — 28)7141)

S Clow ¥l 2o I Vullr2(gp).

'
< CO(/O [”h”LﬁOO(O,L)||8xxxh||i§(0’L)

3 3 3
3 3 2
w2y Moy ) ])

with a constant C depending only on the initial data. Once again, using the energy
estimate (71), we obtain

‘/ Dot (Bytz — 20y1)

1 t 2

§Co[ sup 1A} o (/ 1cxxhll? )
(te(O,T) L$°(0,1) AR 1 (U2

: ot )

+{ sup [0xihll (/ [ 0xxxall ) }
reO.T) xx L§(0,L) 0 Xxx L§(0,L)

t
S Co(1+T) +¢ / ||amh||§§(0 Y (84)
A ,

for arbitrary small &1 > 0, that will be chosen later on. We note that Cp depends
on & a priori but the value of this parameter will be fixed to a universal constant
afterwards. This remark is also valid when other ¢’s are introduced.

Concerning 7>, taking into account the convection of the fluid domain by the
fluid velocity, we have

T2=/ Ou+u-Vu) - w
&

s=t
= |:/ u(-,s)-w(-,s)] —/ B,w—/ u-Vw - u. (85)
F(s) 5s=0 t t

We bound the first term on the right-hand side of (85) using a Cauchy—Schwarz
inequality. Applying the energy estimate (71) and the estimates (125)—(126) on the
gradient of the stream-function, one gets

s=t
[/ u(-,s)~w(~,s)]
F(s) s=0

= Co+ uC, Ol 2 zapIV¥ G Dl 2Fa)

Ll%
<Coll —
= Co +|:/0 hi|

L
< C0+82/ -, (86)
oy

for arbitrary small &, > 0.
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For the second term of the right-hand side of (85), we first integrate by parts
in space. Since ¥ (x, h(x, s),s) = dch(x,s) and 0, (x, h(x,s),s) = 0, we have
o (x, h(x,s),s) = o h(x,s) so that:

t rL
/ u-ow = —/ / orh(x, s)oxh(x,s)o ¥ (x, h(x,s),s)dxds
t 0 JO

+/ (Byttr — yu2)
o)

t L
= —/ / 3, hd hdh +/ (g1 — Dy1t2) .
0 JO Qs

Applying the energy estimate (71) and using the following one dimensional em-
bedding inequality

102G, Dl 0,) = CllOxxh(, D2 0,1

we can estimate the boundary term

t L
/ / 0hd ho;ch
0 JO

t
g / 10:h ”Lé(O,L) l|0xh ”L‘ﬁ’O(O,L) ||3th||Lg(o,L)
0 t

t
2
<c /0 I8achll 20,0, 19ch 3.,y < Co- (8T)

Taking into account (127) and the energy estimate (71), we now bound the second
term by

‘/Q (Oyur — 0xu2)9 | = Colloy 20,
t

1
t 2
2
é Co I:/() (Ilathlng(o,L) + ||8xxxh||L§((),L))i|

t
< Col+T) + 63 /0 0sschl 220 (88)

where £3 > 0 will be chosen later on.
Finally for the last term in the right hand side of (85), we have, after space
integration by parts:

t L
/u.Vw.uz// |a,h|28xxh—/ u-Vu - w. (89)
Q 0 Jo o

Concerning the boundary integral in (89), we apply (71) to show the following
estimate

t L
/ / EXARESY
0 JO

t
2
< ¢ [ (Iushlizon 101z )

A

t
Dyxh dch|? < Cp. (90
teS(lSPT) [0 x ”L%(O,L) /0 [0 ”L%(O,L) < Co. (90)
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Moreover, for the volume integral in the right hand side of (89), we have

‘/ u-Vu - w‘
(o
t L h(x,s) % h(x,s) %
g/ / / uf? / Vul?)  sup lw(ey. )| duds.
0 JO 0 0 ye(0,h(x,s))

From (124) we know that the following pointwise estimate holds true:

|0xh(x, ) [9:h(x,s)
h(x,s) h(x,s)

lwx, y, )l = C (Iaxxh(x,5)|+ ) Vi(x,y) € F(s).

Thus we define

t rL h(x,s) % h(x,s) %
“Z// / uf? / Vul® ) 1axh(x, 5)] | dxds,
0 JO 0 0
L h(x.s) 14 h(es) 7
t o %S dch(x,
=, (/ 'W)(/ WW)L%QQ[MM
070 0 0 (x,s)

and

1 1
t pL h(x,s) 2 h(x,s) 2 9.h 2
132// / u|? / w2 ) PO
0 Jo 0 0 h(x,s)

We now take care of each quantity. Applying the one dimensional embedding
inequality

10xxh (. DllLze0,L) = Clldxxxh (-, D120,

and the energy estimate (71), we obtain:

: N N
I £ C/ (/ |ue] ) (/ [Vul ) 19xxhll Lo 0,1)
0 F(s) F(s) :
t 5 3
< CO/ (/ [Vul ) ||8xxxh||L§(()’L)
0 F(s) -

! 2
C0||VM||L§(QT) |:/0 ”axxxh”ig(oym]

CO t 2
Dt [ Mousshiy

for arbitrary small ¢4 > 0. We now take care of I,. We note then that # vanishes
on y = 0 so that a Poincaré inequality yields:

[IA

[IA



1310 CELINE GRANDMONT & MATTHIEU HILLAIRET

h(x.s) > hx.s) 3
/ ul* ) < Ch(x,s) / A\
0 0

Using this bound to estimate I, we get

t
< 2 o <
L < C/o (IIVulng(F(S))Ilaxhlan (O,L)) =Co

as [0y h(, f)||L§°(0,L) < C|0xxh (-, t)||L§(0yL), which remains uniformly bounded

in time (see (71)). With similar arguments, we also prove I3 < Cy. This yields
finally

'/ u-Vu - w‘ < CO +84/ ||8xxxh||L2(0 L)
t

and thus, taking into account (90)

’/quu
t

Finally, 7> can be bounded, thanks to (86), (87), (88), (91), as

< Co+84/ lechlz 1 1)

t L

1
TSC1+T+5/8h2 +5/—, 92
IT2| = Co( ) +es A [[9ccx ||L§(0’L) 2| 92)

where €5 and ¢; are to be chosen small enough.

Combining (84) and (92) to bound the right-hand side of (83) and taking into
account (71) to bound the remaining terms on the right-hand side depending on &
that might be concerned, we get, forany t < T,

/OL( st + ) + [ [ (et + ctpencnr)

§ Co(1 +T) + pgllosh(, t)”Lg((),L)”axXh('a t)||L§(0,L)

t pL 5 L6,LL t 5
,0// e +8(/ —+/ |0xxxhl )
S 0 0 tx XXX Lé(O,L)

for some arbitrary small ¢ > 0. We conclude the proof of the distance estimate of
Proposition 3 by choosing & small enough.

Remark 4.

— The derived distance estimate relies strongly on the fact that the beam motion
is only transverse and that we control the curvature of the elastic boundary.
Indeed, we need to have bounds on the deformation 4 in L*°(0, T'; Hti2 0, L))
and in L2(O, T; Hﬁ3 (0, L)) to control remainder terms. Both norms are bounded
because o > 0, even if the first one is controlled via the energy bound while
the second one is controlled simultaneously with 27!
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— To prove our distance estimate we need to control ;4 in L%, T; Htl 0, L)).
This is the reason why we assume y > 0. One may wonder whether the fluid
dissipation would be sufficient. A priori, from the L%, T; Hnl (F(t)) bound of

the fluid velocity we only get a control on 9,/ in the space L2 o, T, Httl /2 (0, L)),

which is not enough.

4.3. Regularity Estimate

Combining Proposition 3 with Proposition 7, we obtain that
h~' € L0, T; L}(0, L)).

More precisely, we have that there exists a non-decreasing function R : [0, T*) —
[0, 00) bounded on all bounded subintervals of [0, T*) such that:

1771 G0, + WA G Dll g2y S Re V1 €10, T%). (93)

In particular, the beam never touches the bottom of the fluid cavity on bounded time
intervals. This lower bound on & ensures that the elliptic regularity result derived
in Section 3.2 applies and enables us to pursue further in order to prove global
existence of strong solutions. By choosing appropriate test functions, we obtain the
following quantitative estimate:

Proposition 4. There exists a function Cfeg : [0, T*) — [0, 00) bounded on all
bounded subintervals of [0, T*) such that:

4G D1 ey + 100 C D10 1y IAC D04y S Crg®- O

The remainder of this subsection is devoted to the proof of this proposition. We fix
T < T* and construct the C?eg for t € [0, T']. We split the proof into three steps.
In the first one, we aim at multiplying the fluid equation and the structure equation
by d;u and 9;;h respectively. However, d;u is not an appropriate multipier of the
fluid equation since it does not take into account the motion of the fluid domain.
A natural choice is then the total derivative d,u + u - Vu, but this function is not
divergence free, so we introduce a modified divergence free test function following
ideas of [9]. This step requires us to bound the fluid velocity in Hﬁ2 (F(t)) and
consequently, thanks to the elliptic estimates derived in Section 3.2, the structure
velocity in Hf / 2(O, L). As we do not get estimates on this quantity in our first step,
we need a second step to obtain a regularity estimate on the deformation of the
beam. This second estimate depends itself on the regularity of the applied fluid-
force and thus on high-order norms of the fluid-velocity and the pressure. The final
step consists in a well chosen combination of the two previous estimates in order
to obtain the expected result.

Remark 5.

— As the function R : [0, c0) +— (0, co) satisfies (93), when we apply below
Proposition 1, Lemma 1 or Corollary 2, the associated respective constants
K¢, K* or K? define non-decreasing functions of time bounded on bounded
subintervals of [0, T*).
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— In the computations below, we denote by C¢ a constant depending on initial
data and by Cy : [0, T*) — (0, c0) a function that is bounded on all bounded
subintervals of [0, 7). The value of this constant/function may vary between
lines.

Step 1 : L>(0, T; H') regularity estimate of the fluid and structure velocities
As explained in the previous paragraph, we introduce a vector-field A(-, r) which
coincides with u on d.F(¢) for all ¢ € (0, T'), and which satisfies the following:

- A iAs divergence free, A
VA€ Lg(QT) and V2A € L%(QT) with

1AC. Dl 270y = CoONBREC. D 20,1 95)
”VA(" t)||L§(]-"(t)) § Co(®)I0:h (-, t)”Hﬁl O,L)> (96)
IV2AC Dl 2m 0y S CoONBRC Dl 20,1 7

fgr almost every € 0, 7),
- 4=uand82A=00ny=h(x,t),
- A=0ony=0.

The construction of A is givenin “Appendix B”. With the notations of this appendix,
we have Co(1) = K ! (R;) that is indeed a function which is bounded on all bounded
subintervals of [0, T™).

Next we define v as

v:=8,u+/i-Vu—u~V/§.

Givent < T, itis a suitable multiplier for (1) on Q; as it belongs to Lg(Qt). Indeed,
by classical Sobolev embedding, we have

t
1A - Vull 20, < /0 1Al e IVl cze

'
= Co(t)/ 1Al g1 (Fesy lull g2 F sy
0

< Co(r) sup ||8th('7s)||1-11((),14)
5€(0,1) 1

x (I1Vull 200, + 192l 2(0,)) -

‘We note here that we have used the continuous embedding H LF(s)) = L*(F(s)).
A priori, the constant associated with this embedding depends on the domain F(s)
and thus on the deformation of the beam. However, going back in a fixed domain
and interpolating the results of Proposition 1 (or extrapolating an equivalent version
for the L*-space that we skip for conciseness), we might prove that this constant
is uniformly bounded locally in time, as || A (-, S)HH_Z(O,L) and ||A71(, S)||L§°<0,L)
are bounded locally. In the same way, in what follows, we may use interpolation
inequalities in F(s) for which the constant will be bounded by a locally bounded
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function of ||A(-, s)||Huz(0’L) and |h= (-, 5) ||L§c(0,L) and thus by a locally bounded

function of R;. Similarly, we obtain u - VA€ L%(Q)).
Thus, we multiply (1) by v on Q, and obtain the following identity

/ pr@u+u-Vu)- @Qu+ A-Vu—u-VA)

t

=/ divo - (Qu+ A-Vu —u-VA). (98)

Formally, the trace of v on y = h is equal to d;+h, so we expect that this identity
has to be combined by the structure equation multiplied by d;,h. Again, 0,,h is a
suitable multiplier for (3) as it belongs to L%((O, L) x (0, 1)) and we obtain the
following identity:

L L
/0 paldnhl? - /0 &, p. 1)dyh

L L L
- /0 Duxxshdh + B /0 dxhiuh + v /0 dechduh  (99)

To compute the right-hand sides of (98) and (99), we need more regularity than
the one satisfied by the strong solution under consideration. However the following
lemma holds true:

Lemma 2. For any triplet (w, q, b) satisfying the regularity assumptions of Defin-
ition 1, namely

be H*0,T; L0, L)) N L*(0, T; H}(0, L)),
we H(Qr), VPweLi(Qr), qe€Li(Qr). VqelLi(Qr),
and such that w(x, h(x,t),t) = 0;b(x,t)ey € L§,0(0, L) and divw = 0, the

following identities are satisfied:

t L
/diva(w,q).(athr/i-Vw—w-v/i)=—// d(w, q, h)d.b
0 Jo

1

2 vwlo) + E/ IVw[2(0)
2 JFam 2 JFo)
—2u | D) : ([VA]TVw + VAV = Dw - v/i)) . (100)

Qs

// Oxxxxb 0D — ﬂ// Oxxb 011b — V// OxxtDh 04D

= / (5 100sb e, 0O = Borb, 00, (x. 1) = @b, Db (r. 1) dx

—ﬂ// |a,xb|2—a// |91
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L
_/ (gmlxb(x,0)|2—ﬁ8zb(x,0)3xxb(x’0)_°‘afxb(x’0)8xxxb(x’0)) dx.
0
(101)

The proof of this lemma relies on regularization arguments and is postponed to
“Appendix B”.
Thus, we apply (100) for w = u and b = h. Then identity (98) becomes

/ pf@u+u-Vu)- @Qu+A-Vu—u-VA) =

t

t L 9 M
—// ¢(u,p,h>anh——/ |Vu|2+—/ Viol?
o Jo 2 JFrw 2 JFo

—2,1,/ D) : ([VA]TW + VAUl = D(u - v/i)) .02

t

For the left-hand side of (102), denoted LHS, we have:
LHS:/ ,0f|8tu+u'Vu|2—/ pr@u~+u-Vu) - (u-Vu)
o) o)

+/ pf @ +u-Vu)-(A-Vu—u-VA),
Q

1 1
z—/ pf|a,u+u-w|2——/ pslu - Vul?
2Jg 2Jg

+/ pf(atu+u-VM)'(/1'V”_""V/i)’
o)
which yields

1 t L
% |Vu|2+—/ pf|8tu+u-Vu|2+/ / ¢ (u, p, h)oh
F) 2 /g, 0 Jo

1 . .
< -/ pf|u-w|2—/ pf@u4u - Vu)(AVu —u - VA)
2 /g, Q

—2M/ D) : ([VA]TW+VA[W]T—D(M-V/i))+5/ Vo2,
Q 2 JFo)
(103)

We split the right-hand side of this inequality into six integrals denoted I, ..., I
that we bound independently. Applying interpolation inequalities for estimating the
L*-norm, we have

I 1:/ prlu - Vul?
Q
t 5 2
Co(t) /0 (nunLg(f(s))IIWIIng»)

t
2
CO(’)/O (||u||L§(.7-'(s))”vuuLg(]-‘(s))”u”Huz(]-'(s)))'

A

A
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Next we use the elliptic estimates derived in Section 3.2 to bound ||u|| g2(F(s))-

lull 2 sy < K*(Re) (na,u -Vl TI3AI L)). (104)
ﬁ 9

Following Remark 5, the function of time ¢ — K*(R;) is (non-decreasing) and
bounded on all bounded subintervals of [0, 7*). Thus, I can be bounded by:

t
2
Co(0) /O el 2z VI3 gy -

N 184w Va2 + 13 2 .
( i sEe T 6

Recalling the energy estimate proven in Proposition 2 we obtain, for arbitrary ¢ > 0,

1
< 4
B o [ IVl g,

t
+s/0 (||a,u +u Vully g, + ||8txxh||i§(07L)). (105)

Here and in what follows, we skip the dependance of C(¢) on ¢ as this parameter
will be fixed later on. The second term reads:

I = / pr@u+u-Vu) - (/i -Vu),
9
which we estimate as follows:

t
L2 é/o (Ilazu +u W”Lg(f(s))”A”L‘;(f(s))”V“”Lg(f(x)))

t 1
< -V Vu|?
= CO(t)/O (Hatu +u u”Lé(]:(s)) I u”L%(]—'(s))

1
2 N A2
o ”””H;(f(s» ||A”L§(f(s>) ”A"H; (f(s))) '

Thanks to estimates (95), (96) being satisfied by Aand using Proposition 2 which
enables us to bound ||u||L§(]_-(S)) and ||8,h||L§(0,L), and the elliptic estimate (104),

we get, for arbitrary ¢ > 0 to be fixed later on:

t
< 4 4
|| £ Co(0) /0 (nwnLg(ﬂs)) + ||ath||L§(0,L))

t
2 2
+s/0 (||8lu+u'Vu||L§(]_-(S)) + ”8txxh||L§(O,L))' (106)

The third term reads:

I :=/ pf@u4u-Vu) - (u-VA).
Q
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We estimate it as follows:
t ~
< .
|I3] = /0 (Hatu +u V””L%(}'(s)) ”””L‘,_‘(]-'(s))”VA”Lg(]-'(s)))
t 1
2
< Co(t)/o (||8;u +u- V””Lé(]-‘(s))”””L§(}-(S)) ..

1 1 !
b A2 A2
e Hvu'ng(]-'(s))”A”Hnl(f(s)) ”A”an(]_-(s))) '

Applying estimates (96) and (97) satisfied by A, together with interpolation in-
equalities and Proposition 2, we obtain

t
[13] < CO(t)/O (”at“ +u- V”||L§(]-‘(S))||V”||%§(]_—(S)) cee
1 1
el e ng)) .
Hence, for arbitrary ¢ > 0, there holds:
t
|13 = Co(n) /0 (nwnigw)) + ||atxh||j§(0,m)

t
2 2
+s/o (||3,u+u~Vu||L§(]_.(s)) + ”3txxh”L§(o,L>)~ (107)

We proceed with
Iy = 2#/ D) : ([VA]"Vu + VA[Vu] ),
o)
that we bound as follows (C is a constant depending only on w):
t ) n
L <c /O (nw||L§(f(s))||VA||Lg<f<s>>)
t
< Co(0) /0 (1981 2z 1 2 e 1A s ) -
Similarly to above, using (96) and (104), we obtain, for arbitrary ¢ > 0:
' 4 4
[14] § CO(I)/(; (”atxh”Lg(O,L) + ”VMHL2(]:(A)))

13
2 2
+s/0 (I|8tu+u~Vu||L§(}.(S))+||8;xxh||L§(0’L)). (108)

Finally, the fifth term is defined by

Is = 2M/ D@u) : D(u - VA).
o}
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Expanding D (u - V A), we obtain

|15|<C(/ |Vu|2|vﬁ|+/ |Vu||u||v2A|).
o (o)

The first term on the right-hand side is bounded as 14 (see (108)). As for the second
term of the right-hand side, we have

t 1
20 < N 2
/g, PtV 41 = o0 [ (1Acrn Wl ry -
1
2
- IVl 27 ) ”””H;(f(s)))

t 1
< 2
= CO(I)/O (||8lxxh”L§(0,L)”Vu”Lg(]-'(s))”””Hﬁ2(]:(x))) .

Consequently, we obtain:

t
/ |Vl ||| V2 A] < Co(t) /O IVelZ:
t

t
2 2
+8/0 (||8,u +u- Vu||L§(}.(m + ||3rxxh||L§(07L)) .

Finally, for arbitrary small ¢ > 0, we have:

t
|Is| < Co(t)/0 (Ilatxhllig(a” + ||V”“i§(]-'(s)))

t
+s/0 (||8,u+u-Vu||i§(]_.(S))+||8,xxh||i?(o’L)). (109)

Introducing (105)—(106)—-(107)—(108)—(109) into (103), we obtain that, for arbitrary
& > 0, there holds:

1 t L
Lad |Vu|2+—/ pf|8,u+u~Vu|2+/ / @ (u, p, h)oh
2 Jrw 4Jo, 0 Jo

t
< 4 4

t
I 2
+e 0,u + u - Vul? + 118k )+—/ |Vug|?.
[ (i s T I0tlizon J+5 fr,

(110)

We now take care of the elastic part; we apply (101) of Lemma 2 for » = h and
rewrite (99) as

t pL L y
| [ odaait+ [ (Siocht® - pahoosh — adiuhdnuch)
0 JO 0

t L t oL t L
—ﬂ/ / |0, h|* — Ot/ / |01k ? =/ / ¢, p, )3 h + Co.
0 Jo 0 Jo 0 Jo

(111)
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We add (110) and (111), restricted to & < min(py/8, 1) and bound all possible
terms by energy estimate (Proposition 2). This yields:

m 1 t L
LI wur g [ oot u-vut+ [ [ pan? + Remo
F(0) 8.Jo, 0 Jo

13 13 L
< 4 4 2
<o) [ (I9uypyy by, )+t 0 [ [ aii+co
(112)

where, thanks to Proposition 2, for any ¢ € [0, T']:

L
Rem(r) :/ (g|amh|2 — BOhd,h — aatxhax”h)
0
satisfies:
Rem(r) = —Co — = (119cxxh (-, 1)) xh(-, 1)
em(t) = 0 2 ” XXX (a t)”LZ(O,L) + ” tx ( ’t)”Lz(O,L) .

Finally, we get:

L
u o
2L wup = [ (kP + 13k
F) 2 Jo

2
1 r oL
+—/ pf|8,u+M-VM|2+// ps|3ich|?
8 Jo, o Jo

t t L
4 4 2
< Colr) /0 (IIVulng(f(S))Jr||3th|IL§(O’L))+(a+1) /0 /O |dhch 2+ Co.
(113)

To go further, we need to obtain an estimate for:

! L 2 L 2 2
/ / [0rxxhl]”, / ('axxxh(x,tﬂ + [Oxh(x,1)] )dx-
0 Jo 0

The next step is thus an independent regularity estimate for the beam equation.

Step 2: Regularity estimate for structure equation — First, —0;x,h € Lg((O, L) x
(0, 7)) so it is a suitable multiplier for (3). We obtain after integration:

t L t L
_/ / psatthatxxh'kﬂ/ / axxhatxxh
0 Jo 0 Jo
t L t L
—Ol/ / axxxxhatxxh""y/ / |atxxh|2
0 Jo 0 Jo
t L
= _/ / ¢(M, p7h)8txxh-
0 JO
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We can further integrate by parts

1 L
—/ [Pl ? + @l ? + Blacchl |
0

2
t L
‘H// / |atxxh| /() /0 ¢ (u, p, h)0ixxh

+5/0 [palaciol® + alduchol® + Blovchol] . (114)

Note that all terms make sense due to the regularity of the strong solution /. We
control the first term of the right-hand side with the help of Corollary 2, recalling
that constant K (R;) defines a function of time that remains bounded on bounded
subintervals of [0, T*). Consequently, we obtain:

L
/o ¢, p, h)drxxh

Slp@, p Iy okl
HZ(0,L) H, *(0,L)

< Co(t)(IIMAu = VPl + 1015 L)) okl 3
u ’

Since pAu — Vp = d;u + u - Vu we then have

L
/ @ (u, p, h)d;xxh
0

SCo(t)(lla,u—i—u-Vulle + ||osh]] 3 )||8 h| 3 .
= 2(F@) 4 5 4 5
1 Hn2 0,L) Hu2 0,L)

Moreover, we apply the following interpolation inequality:

0 (-, O 3 < Cllopch(, t)Il 10 cxha (-, t)ll
Hﬁz(O,L)

L2(0.L) L2O,L)

This yields:

L
/(; (b(l/l, pyh)atxxh

< Co(t)||3txh”i%(0,L>

(nam -Vl ey + 19kl L)) (115)

Introducing (115) into (114), we obtain that, for arbitrary ¢ > 0 sufficiently small,
there holds:

1 L
) R Ry T

t
< 2 . 2
:Co(t)/0 ||3th||L§(o,L>+5/0 [10;u + u WIILE(f(S)ﬁCo. (116)
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Step 3 : Conclusion. We multiply (116) by a sufficiently large constant, typically,

(cx 4(a+1))
max | — , 4, ——— ),
P 14

and adding (113), we obtain, choosing ¢ sufficiently small:

ﬁ/ |Vu|2+/ 01t + 1t - V|2
2 JFw :

1 L
+6(§/0 [maum +a|axxxh| // |atxxh|)
< Co(r) / (1+||W||Lz(m)+||a,xh||Lz(0L)) + Co. (117)

where § > 0. Setting

0 1 [k
Eres :=—/ Vul* + —/ [Puloushl? + alich] )
2 JFaw 2 Jo

we then have for all t € [0, T']:

”M( t)”Hl(}—(l)) + ”8th( t)”Hl(O L) + ”h(a t)||H3(0,L) g CO + Cgreg(t)a

with a constant C depending only on u, ps, o and §, and

t
2 2
greg(t) < C()(l‘)/o ((1 + ||Vu”L2(.7-'(s)) + ||atxh”L§(0,L))
. (greg(s) + 1) + CO) .

Proposition 2 implies then that:

t
/ (1 F IVl ) + 10k, L)) < Co(o).
0

We thus complete the proof of Proposition 4 by applying a Gronwall lemma and
remembering that r — Cy(¢) is bounded on any bounded interval.

Appendix A: Technical Details for the No-Contact Result

In this appendix we collect technical lemmas that are used throughout Section 4.

A.l Estimating Positivity of Scalar Functions

We prove first functional inequalities which enable to bound from below a
positive function.
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Proposition 5. Let « € (0, 1/2)\{1/4}. Given a positive function 1 € Ht%(O, L),
there holds:

Eaen* < Cllawanl? )22
o e = TN MMlLe .0
Proof. Without restriction, we assume that 7 is smooth and we set
b(x) =[nx)]'"™* Vxe(,L).

A straightforward integration by parts together with the L-periodicity, yields

L L
/ |8xb|4+3/ b dxb 0:b)* = 0.
0 0

Replacing b by its value, we obtain:
L 4 L 2
[0x7] 3 (1-2a) [0x7|
(1 -ar(—day [ POE 30 e [ [nl10,00] P 0
o In* 0 e
When o # 1/4 this yields

L |8x77|4 <cC L | |(]72a)3 |8x77|2
4o = 77 Xxn 20 °
o Inl 0 nl

We conclude by applying Cauchy-Schwarz inequality, which yields, since v < 1/2,

L |3 77|4 L
- S C P dn?
0 |4 0

In
2(1-2 2
< Cllle iy 12 1

O

Proposition 6. Given a positive function n € H:I3 (0, L), the following pointwise
estimates hold true:

1 1
Ben P < Clldeanll s, ) Iexanl s ) IMEOL V€ ©,L). (118)
|ax77(x)|2 < C”axxxn”L%((),L) n(x)], Yxe(0,L). (119)

Proof. Letus denote z € Htt3 (0, L) a positive function.

1
10200 = M0xzl* + 200zl oo g gy VX € (0, L). (120)

Indeed, as z is L-periodic, dyz reaches its maximal and minimal values. Then, if
0,z 1s maximal at xg € (0, L), then d,,z(x0) = 0 and consequently

1
10:20)| £ V12 (o) + 2052 (x0) £ 11002 + a2l 70 0 1

We get a similar inequality where dz is minimal and obtain (120).
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We now apply the previous estimate with

z(x) =), Vxe(,L).

Of course z is a positive L-periodic function which belongs to Hﬁ3 (0, L) so it
satisfies (120). Replacing z by /7 leads to

19000 < € [19esnll.y n(0). Y € (O, L).

Thanks to the continuous embedding Hﬁ1 (0, L) ﬂLé’O 0, L),in Lgo (0, L), we obtain
(119) and the interpolation inequality

12 12
”axx’?”Lgo(O,L) = ”axxn”L%(o’L)”axxxn”L%(O’L)

IN

implies that (118) is satisfied. O

Proposition 7. There exists a continuous function Dy, : (0, 00) x RT — (0, 00)
such that, given a positive function € Hﬁz(O, L), there holds

In~"lLge0.0) < Drin (Iln” Lo,y ||n||H:z(O,L)) : (121)

Proof. Without further restriction, we assume 7 to be smooth. We note that
! I (0,1 is achieved for some xo € [0, L]. Then, as d,7(xp) = 0 we have:

X
n(x) = n(xo) +/ (s — x0)dxxn(s) ds,
X0
At this point, we consider two cases. First, if || 0y, n]| 120.0) = 0, we obtain
™ 20,0y = LI e, (122)

Second, if ||8xxn||L§(0’L) > 0, we have the bound:

1 3
n(x) < nxo) + —=lnll 2o,y ¥ — 0|2, Vx € (xo — L. xo+L).

V3

For simplicity, let denote n,, := n(xg) and M = ||n|| H2(0,L) / /3. We have then

~ WL ds L ds 1 M7
O,L) (s) 3 o 1
f X0 n 0 9y, + Mls|2 Mj’?r%z Nm

where we applied a straightforward change of variable to introduce

Lo dz
b (o) :=/ —
0 (I+1z[2)
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We remark that ¢ : Rt — R is an increasing continuous function such that

Lo for o0 << 1,
$(0) ~ ./ _dz
R

3 for o >> 1.
14 z|2

Furthermore, applying that ||5~! ||L§(0,L) < LllnfllngO(o,L) = Ln,!, we obtain

Min~ 'l
ERTe— e
Ln(O,L) = % 1

M3ngy L
Finally, if ||'7||H§(0,L) > (, we have:

—1
™l

< Inll? I3
= th(O,L) L;(O,L)

20,y 10~ N L2co.)
L

(123)
The above expansion of ¢ (o) for small values of o yields that, when ||5|| H2(0.L) <<1
with ||~ 1| L10.L) bounded, there holds

2 -3
) 143 lln; sz(o» L)”””/_IHL&(()’L)

L

|-
Nz”'? ”LQ(O’L)'
Hence, we set

2 -3
o ﬂ2a3 ,305 3
Din (, ,3) = Z, lf,B =0, Din (¢, ,3) = 9 |:¢(|:T:| ):| .
Because of the previous arguments, this is a continuous function on (0, 00) x [0, 00)
which satisfies (121). 0O

A.2 Estimates on the Stream-Function

In this appendix, we gather technical estimates regarding the stream-function

Y.y 1) = dchx. 0o (o) Y y.0 € Qr,

h(x,1t)
where h € HZ(O, T; Lg(O, L))N LZ(O, T; Hg‘(O, L)) is given and remains strictly
positive on (0, 7). We recall that
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x0(2) =2°(3 —2z) Yz e (0,1),

and that F(¢) stands for the fluid domain at time ¢ and Q7 is the time-space fluid
domain. With these notations, we prove:

Proposition 8. There exists a universal constant C < 0o for which:

— forallt € (0, T) forall (x,y) € F(1),

2
[0ch(x, )| |0xh(x, 1) } (124)

<
VY (x,y, 1) < C|:|3xxh(x,t)|+ hx. 1) h(x,1)

— forallt € (0,T),

L 1 7
10y (s Dll 2y S cnhan(O L)uaxxhan(o H [ / ﬂ . (125)
”8)61//(‘, t)”[}(]—'(z)) = C”h”LOC(O L)||8xxh||L2(() L)s (126)

— on the whole time—space domain,

T
2
109l < C[ /0 (PN LR

1

2
2
+ ||a,h||L§(O,L)||axxxh||L§(0,L))] , (127)

T
2
Il 20y < C[ /0 (10 ) WBwcI 3

1

2
- ||a”h||L2 on mhuLz OL))} . a2

Proof. We start by the time-dependant estimate. We compute the partial derivative
of the stream-function with respect to the space variables, for any (x, y, t) € Or:

Ahix, )2
8x1/f(x,y,t)=8xxh(x,t)xo(h(xyt))—| (x ’)”xé( Y )

|h(x,)]? hix,t)
Och(x, 1) y
h(x,t) (h(x,t)

Thus (124) is satisfied. Furthermore, we have, for all ¢+ € (0, T), recalling that

xo0 € C*°([0, 1]),
hCaD 19 h(x, 1)|? y
18y 172y = / / Tha 2 [ (h(x,t))

ach(e, 01
// Shen |%6(2)|* dydz.

ayl/f(% )’7[) =

2
dydx
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Then applying Proposition 5 with « = 3/8, we have:

1 1
L 42 L 2
2 |0,h| 1
||ayw||L2(f(,))<c[ /0 - "
1 1
1 L |3 h|4 2 L 172
< C llhllfo, g / —— [/ —}
g 0 |h|2 0o h

1 L 1 2
§ Cc ”h”LZIgO(O‘L)”axxh”L%((),L) |:/ Zi| .
k " 0

With similar arguments, we easily obtain

> - > Elaxhlt
1Y L2y S € | Wiz Wechllpz )+ | = |-

Applying again Proposition 5 with @ = 3/8, the following estimate holds true in a
way similar to as above:

2 2
19 120y < ClAllze0.0 ekl -

This ends the proof of (125) and (126).
We now take care of the two other estimates. A simple calculation gives

W (x, y. 1) = deh(x. D0 (my t))

_8xh(-xv t)alh(-xv t)y / ( y
AV

) , Y(x,y,t) € Or.
Consequently, we have

13:¥ 11720,

T L 2 2
ach|2h|
< - 2 [0x t
<c /0 (nhnLn 0.0kl ) + /0 —).

With Proposition 6 we bound the ratio |d,4|>/h in the right-hand side, and we
obtain

19:¥ 13,

T
2 2
<c /O (nhuLgo(o,L)||axzh||L§(0,L) + ||azh||L3(0,L)||axxxh||L§<o,L)) .
Finally, we estimate d,, 1 which is equal to

_ y _ 3yduch(x, H)dch(x, 1) y
Oxx W (x,y,1) = Oxxxh(x,1) X0 (h(x,t)) (h(x,t))2 X0 (h(x,t))

(Och(x, )3y v )
0t X \h@n)
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Consequently, the following estimate holds true

T
2 < o 2
I 1220, < C /0 [nhnL: 0.0 lschl} g 1)

+/L |a”h|2|axh|2+ |3k
0 h IEAR

By estimates (118) and (119) of Proposition 6, we obtain

T
2 < o 2
1ot 1220, < C /0 [nhuL: 00 IBsechllyg 1,

3 3
2 2 2
ek 0 1) 1Beechll 30,0+ 1echl 5 ||amh||L§(o,L)}.

Finally (128) is satisfied. O

Appendix B: Technical Lemmas for the Regularity Estimates

In this second appendix, we collect technical results that are applied in the proof
of Proposition 4. We first construct the lifting velocity-field A and prove then two
identities that are central in the proof of our regularity estimates.

B.1 Construction of A

We construct a time-frozen operator Uj, which satisfies the equivalent properties
to the one we require for A. We shall then set A = Up[9;:h]. The construction of
U, is the content of the following proposition:

Proposition 9. Let h € sz(O, L) such thath~! € LgO(O, L), there exists a contin-
uous linear mapping Uy, : Hﬁ1 O,L)Nn LéyO(O, L) — Htl (£2p) s.t. -

~ foralli € H!(0, L) N L (0, L) we have
Unlnl(x,0) =0, Unplnl(x, h(x)) = n(x)ez2, Yx €(0,L);
divU,[n] =0 on £

— forallj € H;(0, L) N L (0, L) there holds Uylij] € HZ ($2p).

Furthermore we construct Uy, such that:

- QUpn(x, h(x)) = 0.
— there exists a constant K depending increasingly on || h | H2(0,L) +[IA7Y L°(0.L)

Sfor which
1AL 22, S K Nilli200,0)- (129)
WAL 13,y < K Nitllir1 0,0 (130)

WUl 2@,y < K'Nitll20,n). Vit € HE(O. L) 0 LE (0. L). (131)
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Proof. We consider & € sz(O, L) which does not vanish on (0, L) and assume
that

2l 20,1y + 1A~ 2 0.y < Ro-

We construct Uy, in order that (129)—(130)—(131) holds with a constant K' depend-
ing on Ry only.

Fix 1 = 1/(2Rp) so that minyejo,z] h(x) = 2A. Assume that 7} € Hﬁ1 O, L).
We define U, as

.~ [#es.  in 25\ (0, L) x (0, 1),
Uh[”]_[uk[i;], in (0,L) x (0, 1). (132)

Note that the restriction of Uj, to £2;, \ (0, L) x (0, A) obviously satisfies continuity
estimates similar to (129)—-(130)—(131). With this step, we reduce the construction
to a rectangular box. In order to change the boundary on which we have to match
the data, we define U, [1] by:

1 ~ A—
Upliilr. y) = ( 0 ?) 0t (x, y), V(. y) € (0,1) x (0. 2.

Let us define now U [7]. We expand 1 € Hﬁ2 (0, L) in Fourier series as
. ) L TX
n(x) = Z Np EXP (znT) .
nez

By assumption, we have 79 = 0. Let k € N. Then, choosing Q a polynomial
function such that:

00 =1 Q=00 =0 (133)
0V =0 VI<k+1. (134)

and, for alln € Z:
Py(z) :== Q(min(|n|z, 1)) Yz € [0, 00),

we obtain that P, € C k+1([0, 1]). Consequently, we define

~ L7
U[T}] = Vll]/, Wlth ':l/(x, Z) = E ﬂpn(z) exp (anT_)C) .
neZ i L

With this definition we have

Unl(x,0) = n(x)ex and U[n](x,1) =0 forallx € (0,L), (135)
3 U[7](x,0) =0, (136)
divU[57] =0 on £2;. (137)
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Consequently, thanks to (136), we deduce classically that Uj[7] defined by (132)
belongs to H?2(£2;,). Moreover, for all (j, ) e N2 s.t. max(j,[) < k + 1, we have,

because of the x-orthogonality of the basis x + exp(in %), that

1
192929172 0.1yx 0.1 = € 2. /0 PO, 7100 (Inl2) Pdz
nez

1
SC(E |n|2<f+”—3|m|2) / 100 () Pdz
0

nez

<7 CHUHZ 3 “Q”2 .
= it1—3 H'(0,1
ﬁ’” 2(0.L) ©.h

Consequently, when 1 € Htk_l/z(O, L), we get that Uln] € an(.Ql) and that the

following estimate is satisfied:

1O e,y S M@kl o1 (138)
HE(@21) H*1(0,1) 2o

Up to the change of variable which depends only on A and is thus bounded by
a constant which depends only on R(, we obtain that U, also satisfies continuity
estimates similar to (129)—(130)—(131). This ends the proof. O

Remark 6. An alternative construction for U}, reads:

_ N hix) —
Uilil = B; T ( o ?) Ol (x, %) ,

where By, is defined by (52). With this construction, we may exploit the better con-
tinuity estimates for 1 +— Up[n] (gain of 1/2 derivative, see (138)). However, this
construction requires more regularity of / than the construction given in Proposi-
tion 9.

B.2 Regularity Identities

Lemma 3. Let h € H?(0, T; L*(0, L)) N L*(0, T, H*(0, L)) such that we have
h=' e L*®((0, L) x (0, T)). For any triplet (w, q, b) satisfying the regularity
assumptions of Definition 1, namely

be H*(0,T; L(0, L)) N L*(0, T; HY(0, L)), (139)
we H/(Qr), VPweLi(Qr)., qeLi(Qr). VqeLi(Qr), (140)
and such that w(x, h(x,t),t) = 0;b(x,t)er € L§’0(O, L) and divw = 0, the

following identities are satisfied:

t L
/diva(w,q)-(athr/i.Vw—w-v/i)=—// d(w, q, h)d.b
0 Jo

&

+u/ Ilez(t)—M/ Vw[2(0)
F (1) F(0)

+2u/ D(w) : ([VA]TVw + VAV = Dw - v/i)) , (141)
o)
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/ / xxxxb attb ﬂ/ / 8x)cb attb 7// / xxtb attb

:/ —|8,Xb(x t)|2dx—,38,b(x )0y b(x, t)dx — a0, b(x, 1)0yxrb(x, t)dx

—ﬂ// 00 —a// Oucsbl?

—/ 2 19,eb(x, 0)2dx + B3b(x, 0)d,.b(x, 0)dx
0
— @ b(x, 0)dyrrb(x, 0)dx. (142)

Proof. The second identity, involving b only, is straightforward since applying
classical interpolation arguments (see in particular [40, Theorem 3.1, p. 19]) the
regularity (139) of b implies that

b e CO((0, T); H (0, L) NH' (0, T; H7 (0, L)) N C'((0, T): H} (0, L)). (143)

We now explain how one can obtain the first identity. Assuming that (w, b) are
regular enough we have

/ divo (w, gq) - (;w + A-Vw—w-VA)

t

t
=// ow,g)n-(w+ A-Vw—w-VA)
y=h(x,s)
t A~ A
—// o(w,q):VOyw+ A-Vw —w - VA).
F(s)

However by the assumption satisfied by (w, b) on the boundary y = h(x, ) and
by the construction of A

w-VA = wzazli =0,

« N on y=h(x,t).
dw+A-Vw—w-VA = dybes, y=hx. )

Combining this with the definition (4) of ¢, we have

t t L
/ / a(w,q)n-(a,w+A-Vw—w-vA)=—/ / d(w, g, h)dyb.
0 Jy=h(x,s) 0 JO

On the other hand, we have by construction since divw = div A=0
div(atw+/§~Vw—w-V/i) =0.

Consequently, recalling that F () moves along the characteristics of A, we obtain
the following equality:



1330 CELINE GRANDMONT & MATTHIEU HILLAIRET

/ U(w,q):V(atw+/ioVw—w~V/i)

t

=2M/ D(w) : D(w+ A -Vw —w - VA))
Q

= u/ |Dw|* — u/ |Dw|*(0)
F(t) F(0)

+2M/ D(w) : ([VA]Tva/i[Vw]T —D(w- v/i)).
o)

As already noted, thanks to the transverse motion on the fluid domain, to the fact
that the trace of w on the moving boundary is colinear to e, and to the divergence
free property of w, we have

1
/ |Dw|> = —/ IVw|?.
F) 2 JFam

Consequently, we deduce that (141) holds true for any regular enough couple
(w, b). Even though all the terms in the final identity are well-defined for vector-
fields w satisfying (140) (we already noticed in Remark 1 that with the regularity
(140) we have that t — f]_-(t) |[Vw]|2(-, ) is continuous) we need here to get more
precise on the meaning of boundary terms in integration by parts. Note in particular
that, with (140), we only have d;w € L2(Q,) so that its trace on y = h(x,t) is not
well-defined (though it is divergence-free).

There are several ways to overcome this difficulty. For instance, one may note
that the computations above are completely rigorous if we assume further that
Vo,w € L?(Q;). We may then end the proof by a density argument. Indeed,
reproducing computations in the proof of Proposition 1 we have that the regularity
(139)—(143), also satisfied by /, ensures that the transformation w +> W defined
by:

w(x,y,s) = B;T (x, h(;, s)) w (x, ﬁ,s) (x,y,8) € 9,

realizes an homeomorphism between the set of w with regularity (140) and the set
U= H (21 x (0, 7)) N L*((0, T); HF (1))

Furthermore, this mapping exchanges the subset of w and w whose (space)-gradients
are square integrable on the time/space domain. As U/ C C([0, T']; Hﬁ1 (£21)), we
note also that if W, converges to w in U then ¢ f}-(t) [Vwy (-, 1)]? converges to
t — f]—‘(r) IVw(-, 1)|* in C([0, TY). Consequently, we can pass to the limit in the
identity (141) for a sequence of w,, such that the associated W, converges in I/ to
w.

We can then decompose any w € U into

W= o + U[b] ( with U defined in the proof of Proposition 9 )
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and approximate b by considering its (L2-)orthogonal projection on the first eigen-
modes of the beam operator (9, ) and wq by considering its (Lz—)orthogonal pro-
jection on the first eigenmodes of the Stokes operator with homogeneous Dirichlet
boundary conditionsonz =0andz=1. O
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